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What is IOS?A promising solution to enhance 
the capacity of wireless networks
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Reflective Intelligent Surface (RIS)

Only Reflection of incident signal

*Source: Zhang, S., Zhang, H., Di, B., Tan, Y., Renzo, M.D., Han, Z., Poor, H.V., & Song, L. (2020). Intelligent Omni-Surface: Ubiquitous Wireless Transmission by 
Reflective-Transmissive Metasurface. ArXiv, abs/2011.00765.

Intelligent Omni-Surface (IOS)

Simultaneously Reflection & Refraction



Challenges for Implementation of IOS

• Numerous IOS elements

• Phase shifts of all of IOS elements need to be configured simultaneously, which
brings difficulty in solution searching.

• Dynamic Environment

• The channel state of environment changes rapidly, which requires real-time
updates of IOS configuration.

• The above two things combines together to require an efficient
beamforming scheme to tackle numerous IOS elements adapting to the
varying channel information, users' positions, etc.
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Machine-Learning Based Beamforming

• Why ML is widely used?

• Advanced ability in extracting features from channel state information.

• Reinforcement learning (RL) Method

• Able to well depict the interaction process between intelligent surface and the
environment.

• HUANG, et al. (2020) develop a Deep RL based method to jointly design the
transmit beamforming matrix and phase shifts of RIS.

• LEE, et al. (2020) also use DRL to solve the problem of energy efficiency
optimization.

• ZHANG, et al. (2022) consider a system with multiple RISs and design a
hierarchal policy network to improve the sum rate.
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Limitations of Current Methods
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Small-sized intelligent 

surface in consideration 

Large-scale intelligent 

surface in real world

• We aim to develop an efficient beamforming scheme to address practical concerns

• How to adapt to the dynamic case where the channel information and user positions vary with time?

• How to deal with the numerous phase shift variables brought by a large-scale IOS in this case?

Static channel information 

and locations of users in 

consideration

Highly dynamic 

environment in real world
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Scenario Description
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Incidence Ray

Reflective Ray

Direct Link

Refractive Ray

• MISO system:

• M antennas at Base Station (BS)

• K users with single antenna

• IOS:

• Consisting of N elements

• Able to reflect and refract the

transmit signal

• Dynamic Environment

• Channel states and locations of users

may vary with timeBase Station 

User 1

User 2

User 3

User 4

IOS



Channel Model
• For each user 𝑘 we consider the Light-of-sight channel as a hybrid channel

𝐇𝑘
𝐿𝑂𝑆 = Δ𝑢𝐇𝐼𝑈,𝑘𝚯𝐇𝐵𝐼 + 𝐇𝐵𝑈,𝑘

Where 𝑢 ∈ {𝑟, 𝑡} refers to the reflective and refractive respectively, while Δ𝑢 represents the energy split for each type of users. 𝚯 = diag ej𝜃1 , ej𝜃2 , ⋯ , ej𝜃𝑁

stands for the phase shifts of IOS.

• According to Saleh-Valenzuela Model, the channel of IOS-user, BS-IOS and BS-user can be further written into

𝐇𝐵𝐼 = 𝑆1𝑨𝐼𝚺𝐵𝐼𝑫𝐵
𝐻, 𝐇𝐼𝑈 = 𝑆2,𝑘𝑨𝐼𝑈,𝑘𝚺𝐼𝑈,𝑘𝑫𝐼,𝑘

𝐻 , 𝐇𝐵𝑈 = 𝑆3,𝑘𝑨𝐵𝑈,𝑘𝚺𝐵𝑈,𝑘𝑫𝐵,𝑘
𝐻

In which 𝑨 and 𝑫 refers to transmit/receive steering matrices, the 𝑖-th column of each matrix is the steering vector and can be expressed by 𝑓 𝑀, 𝜃 =

1

𝑀
1, 𝑒𝑗𝜋𝜃 , ⋯ , 𝑒𝑗𝜋 𝑀−1 𝜃 𝐻

where 𝑀 is the number of antennas and 𝜃 is the Angle-of-Arrival (AoA) or Angle-of-Departure (AoD). 𝚺 represents the gain of each 

channel, while 𝑆 stands for the path loss.

• We assume the equivalent channel of each user follows Rician Distribution, i.e., 

𝐇𝑘 =
𝐾𝑅

1 + 𝐾𝑅
𝐇𝑘
𝐿𝑂𝑆 +

1

1 + 𝐾𝑅
𝐇𝑘
𝑁𝐿𝑂𝑆

𝐾𝑅 is the Rician factor. 𝐇k
NLOS has similar expression as 𝐇k

LOS, but its AoDs or AoAs are randomly generated.
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Finite State Markov Channel

• We choose to fix the LOS component and discretize the NLOS component 𝐇𝑘
𝑁𝐿𝑂𝑆 into 𝐿 levels.

• ℋ = {𝐇1, 𝐇2, ⋯ ,𝐇𝑘}

• Transition probability matrix: 𝑷 =

𝑝1,1 ⋯ 𝑝1,𝐿
⋮ ⋱ ⋮

𝑝𝐿,1 ⋯ 𝑝𝐿,𝐿

• 𝑝𝑙,𝑙′ = 𝑃𝑟𝑜𝑏 𝐇𝑡+1 = 𝐇𝑙′ 𝐇𝑡 = 𝐇𝑙 , 𝐇𝑙 , 𝐇𝑙′ ∈ ℋ

• P is generated randomly, so do the NLOS components.
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Sum Rate Maximization Formulation

• We consider the sum rate maximization problem of all users in 𝑇 time slots.

𝑦𝑘,𝑡 = Δ𝑘𝐇𝐼𝑈,𝑘𝚯𝑡𝐇𝐵𝐼 +𝐇𝐵𝑈,𝑘 

𝑗=1

𝐾

𝑽𝑗,𝑡𝑚𝑗 + 𝑛𝑘,𝑡

𝛾𝑘,𝑡 =
|(Δ𝑘𝐇𝐼𝑈,𝑘Θ𝐇𝐵𝐼 +𝐇𝐵𝑈,𝑘)𝑽𝑘,𝑡𝑚𝑘|

2

Δ𝑘𝐇𝐼𝑈,𝑘Θ𝐇𝐵𝐼 +𝐇𝐵𝑈,𝑘 σ𝑗=1,𝑗≠𝑘
𝐾 𝑽𝑗,𝑡𝑚𝑗 + 𝑛𝑘,𝑡

𝑅𝑘,𝑡 = log2(1 + 𝛾𝑘,𝑡)

𝑷𝟏: max
{𝑽𝑡,𝚯𝑡}



𝑡



𝑘

𝑅𝑘,𝑡

• Solving 𝑽𝑡 with fixed digital beamforming method as water-filling and zero-forcing, 
we can rewrite the problem as

𝑷𝟐:max
𝚯𝑡



𝑡



𝑘

𝑅𝑘,𝑡
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EnvironmentBase Station

𝑎𝑡 = 𝚯𝑡

IOS

Reflect & Refract
𝚯𝑡−1

𝐇𝑡

𝑟𝑡 = 𝜂

𝑘=1

𝐾

𝑅𝑘,𝑡

s𝑡

Sum Rate Feedback

···

𝐇𝑡 = 𝑑𝑖𝑎𝑔 𝚫 𝐇IU,t𝚯t−1𝐇BI,t + 𝐇BU,t

𝐇𝑡+1 = 𝑑𝑖𝑎𝑔 𝚫 𝐇IU,t+1𝚯t𝐇BI,t+1 + 𝐇BU,t+1···

(Next Time Slot)

Markov Decision Process Reformulation
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Basic Definition

• Task: Denotes a process of the BS maximizing the sum rates of all
users in a fixed number of time slots. For different tasks, the
parameters of BS and IOS are set as the same, while the channel states
and locations of users are various.

• Actor: It receives the information of state from the task in each time
slot and outputs correspondent action. We adopt a neural network as
the policy of the actor.

• Meta-Critic: Consists of two parts, a task recognition network and a
critic network. The former extracts the history information and
generates the task-recognition Q-value, while the critic network
outputs a task-specific Q-value to update the actor networks.
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𝑇𝑎𝑠𝑘 1

𝑇𝑎𝑠𝑘 𝐼

𝑇𝑎𝑠𝑘 𝑖 ···

𝑠𝑡
1

··

·

𝜋(𝑎𝑡
1|𝑠𝑡

1, 𝜃1)

𝑎𝑡
1

𝜋(𝑎𝑡
𝐼|𝑠𝑡

𝐼, 𝜃𝐼)

𝑠𝑡
𝐼 𝑎𝑡

𝐼

< 𝑠𝑡
1, 𝑎𝑡

1, 𝑟𝑡
1 >

< 𝑠𝑡
𝐼 , 𝑎𝑡

𝐼 , 𝑟𝑡
𝐼 >

Replay

Buffer

Update Actor 𝜃1

Update Actor 𝜃𝐼

< 𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 >

Critic Network

Task Recognition Network

ℋ = {< 𝑠𝑡− ҧ𝑡~𝑡−1
𝑖 , 𝑎𝑡− ҧ𝑡~𝑡−1

𝑖 , 𝑟𝑡− ҧ𝑡~𝑡−1
𝑖 >}

෨𝑄
𝑄i

Update Actor 𝜃𝑖

Meta Critic

𝐴𝑐𝑡𝑜𝑟 𝐼

𝐴𝑐𝑡𝑜𝑟 1

𝑄𝜋(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ,ℋ;𝝎)
Update Meta Critic 𝝎

Meta Training 

Meta Learning Phase

In the meta-learning phase, both the actors and meta-critic are updated. 17



𝑁𝑒𝑤 𝑇𝑎𝑠𝑘 𝑠𝑡

Well Trained Meta Critic 𝜔⋆

𝐴𝑐𝑡𝑜𝑟

𝜋(𝑎𝑡|𝑠𝑡, 𝜃)

𝑎𝑡 < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 >

Replay

Buffer

ℋ = {< 𝑠𝑡− ҧ𝑡~𝑡−1, 𝑎𝑡− ҧ𝑡~𝑡−1, 𝑟𝑡− ҧ𝑡~𝑡−1 >}

Update Actor 𝜃

𝑄𝜋(𝑠𝑡, 𝑎𝑡 ,ℋ;𝝎⋆)

Online Training 

Online Learning Phase

In the online learning phase, only the actors are updated, while the well-

trained meta-critic is kept static. 18
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Sum Rate Performance in Dynamic Settings

Sum Rate Performance with respect to 
the varying channel states
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Sum Rate Performance with 
respect to User’s locations

Change point of different tasks



Influence of the Number of IOS Elements
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Conclusion

• Current works seldom consider the challenges brought by a large
number of IOS elements and dynamic environment.

• We proposed MC-DDPG, a meta-critic RL scheme for sum rate
maximization given the limited CSI, which is able to:

• Achieve a faster convergence speed and a higher sum rate compared to the
benchmarks.

• The robustness of MC-DDPG against IOS sizes is verified.

• We can draw two take-away conclusions:

• The designed meta-critic significantly enhances the robustness of the IOS-
assisted multi-user communications against user mobility and the dynamic CSI.

• There exists a trade-off between the convergence speed and the achievable
sum rate of MC-DDPG.
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