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Introduction

The received signal strength (RSS) fingerprint approach is one of the most cost-efficient and

widely-used approaches for indoor localization. It first selects multiple sample points in the room

and collects RSS from several access points (AP) to form a fingerprint map. Thus, by comparing

the RSS values from the user with the map, we can locate the position of the user.

AP 1 AP 2

AP 3

AP 4

AP 5

RSS Fingerprint

Localization

RSS Fingerprinting

With Multiple APs

RSS Fingerprinting 

With Single AP and RIS

Figure 1. An illustration of RSS fingerprint for indoor localization

However, there exist two challenges when implementing the RSS fingerprints method for indoor

localization in practice:

Multiple APs: Systems based on traditional RSS fingerprint mapping often require multiple

APs to form the fingerprint, which brings a burden of extra devices as typically we do not

have that many closely spaced APs deployed in a single room or building.

Dynamic Environment: In real indoor wireless environments, the RSS fingerprints are very

noisy and time-varying due to the shadowing and multi-path effect. Thus, once the

environment has changed, it is necessary to recollect the RSS fingerprints, which costs a lot of

effort and time.

Methodology

To tackle the aforementioned issues, first, we choose to use Reconfigurable Intelligent Sur-

face (RIS), a planar sheet consisting of numerous electrically tuneable elements, to generate the

RSS fingerprint. By configuring RIS elements, it can change the phase shifts of the reflected signal

to obtain multiple RSS values to form the fingerprint map using only a single AP.

As for the challenges brought by the dynamic environment, we carefully designed the mapping

module between RSS fingerprints and the user’s location. In detail, we propose a meta-learning

method implemented in the mapping module based on a novel weighting scheme for RSS finger-

prints collected from different environments.

We first conduct the meta-learning phase with all the data collected at different times to build

a meta-model, i.e., a generalized convolutional neural network (CNN), followed by the online

learning phase where we re-train the meta-model with only 20% of data in a new

environment.

Evaluated by the data collected with the above system under the time-varying environment,

our proposed approach achieves better localization accuracy compared to other benchmark

methods trained by fewer data, lowering mean localization error by 21.5%.
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Figure 2. Architecture of Meta2Locate
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Figure 3. A cycle of the protocol forMeta2Locate

The system architecture of proposed Meta2Locate is shown in Fig. 2, which is divided into two

sub-modules: RSS fingerprints generation and RSS fingerprint—location mapping.

The RSS fingerprints generation module mainly has the following three components:

Transmitter&RIS: The transmitter is placed on the right side of the room along our

self-designed RIS depicted by Fig. 4(c), which consists of 28*28 elements and works at the

sub-6G band centered by the frequency of 5.5 GHz. As shown in Fig. 4(b), it combines the

RIS, control circuits and transmit antenna together to reconfigure the wireless environment.

It also includes a Universal Software Radio Peripheral (USRP) to generate transmit signal

and is controlled by a host computer, which also controls the configuration of RIS.

Receiver: The receiver of the system is deployed on a robot as in Fig. 4(d). It is equipped

with a USRP connected to a host computer, which records RSS from the USRP.

Data Collection: As shown in Fig. 4(e), we divided the plane of the room into grids and

choose multiple points to collect data. The blue × data points are collected as the training

set, while the red · points form the test set. All the black × and · points are not sampled
due to the obstacles and restrictions of the environment. In the process of data collection,

we move the car to each point and change the configuration of RIS 10 times and record the

corresponding RSS as the fingerprint. The protocol of Meta2Loate is shown in Fig. 3.
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Figure 4. (a) Layout of Meta2Locate, (b) Transmitter&RIS, (c) RIS, (d) Receiver, (e) Collection map

As shown in Fig. 3, for measurement at each location, the Tx first transmits a synchronization

frame to the RIS and Tx to initialize the measurement. Then, in the RSS fingerprint genera-

tion phase, the host computer keeps generating the sine wave signal to the USRP, meanwhile

changing the configuration of the RIS as {c1, c2, · · · , cK} to acquire K different beam patterns.

Thus, the receiver can record K RSS values and turn them into a fingerprint, in the form of

a vector as r = {r1, r2, · · · , rK}. With the collected RSS fingerprints, we can either train a

localization model by the practical locations of Rx or use the model to predict Rx’s locations.

Experimental Result

We define the task Ti as building up a mapping function in a specific wireless environment

numbered by i.
fθ(r) = (x, y),

where (x, y) refers to the location of the Rx, and θ represents the parameter of the mapping

function. We randomly select one task as the test task and use others as the training tasks, in

which each task consists of a training set and task set collected byMeta2Locate. With the test

task, We evaluate our proposed method and other benchmarks as illustrated in Table. 1.

Table 1. Proposed and Benchmark methods

Method Trained by the training tasks
Fraction of used training set from

the test task for re-training

Proposed X 20%

CNN-1 100%

CNN-2 X 0%

CNN-3 20%

KNN 20%
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Figure 5. The CDF curve of
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Figure 7. Heatmap of the
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In Fig. 5, we first show the CDF curve of the localization error comparing our proposed method

with the other two benchmarks: (1) CNN-1 trained by 100% of the training set from the test

task, (2) CNN-2 trained by the training tasks but without retraining of the test task. The compar-

ison between CNN-1 and CNN-2 verifies the variability of the wireless environment and the

necessity of recollecting data for retraining. The result also shows that our proposed method

can achieve a close performance compared to the CNN model trained by more data.

Fig. 6 compares the localization error of our proposed approachwith the other two benchmarks,

(1) CNN-3; (2) a k-nearest-neighbor (KNN) model named KNN. Both of the two benchmarks are

trained from scratch using only 20% of the training set from the test task. Evaluated by the test

set, the results show that our proposed approach outperforms traditional CNN and KNNwith

the same downsampled training data, improving the mean, median and 80 percentile error by

21.5%, 21.7% and 17.0% respectively.

Fig. 7 depicts the heatmap of the localization error using the test set from the test task, where

the data of blocks colored bywine red are NaN due to restrictions of the environment. It can be

seen that data points in the first column tend to have higher errors. One possible reason is that

these points are closer toAP and RIS, where the variation of the electromagnetic environment

is more acute. Besides, the localization error of data points from the first row is also higher. It

can be explained by the limitation of the scan angle of the RIS, as it is harder for it to direct

the beam to these points.
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