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Abstract— With the 5G systems being highly developed, the
urge of the next generation networks is increasingly necessary,
which demands extremely high data rates and low latency. As an
emerging technology capable of reflecting and refracting the
incident signals on both sides simultaneously, recently the intelli-
gent omnidirectional surface (IOS) has been used to enhance the
capacity of wireless networks. However, it is challenging to design
an IOS-enabled beamforming scheme that can respond quickly
in a varying mobile environment due to its high complexity.
In this paper, we aim to maximize the sum rate in an IOS-aided
multi-user system given dynamically changing channel states
and user mobility. A novel meta-critic reinforcement learning
framework named meta-critic deep deterministic policy gradient
algorithm is proposed to design the IOS-enabled beamforming
scheme. We propose a meta-critic network that can recognize the
environment change and automatically perform the self-renewal
of the learning model. A stochastic explore-and-reload procedure
is also tailored to reduce the high-dimensional action space
problem. Simulation results demonstrate that our proposed
method outperforms other benchmarks including the state-of-
the-art reinforcement learning method in both achievable sum
rate and convergence speed.

Index Terms— Intelligent omni-surface, beamforming, meta-
learning, dynamic environments, 6G.

I. INTRODUCTION

THE high development of the 5G communication sys-
tem urges academia and industry to shift their attention
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towards 6G, where stringent requirements have been raised to
achieve very high data rates even in dynamic environments [2].
To meet such requirements, intelligent metasurfaces have
emerged as a promising enabling technology owing to its
potential to boost the system performance in terms of spectrum
efficiency [3], meanwhile supporting various applications in
the 6G networks, such as joint sensing and communication [4].
One typical metasurface, intelligent omni-surface (IOS), has
recently attracted great attention for its ability of simultaneous
signal reflection and refraction towards target directions to
serve users on both sides [5].

Despite the capability of IOS to enhance the data rate,
the numerous number of IOS elements also brings a heavy
computational burden since the phase shifts of all IOS ele-
ments need to be optimized [6]. This problem can degrade the
system performance such as achievable data rate, especially in
a dynamic environment that requires a fast response of IOS
phase shift configuration. Therefore, it is critical to develop
an efficient beamforming scheme that is capable of adapting
to the varying propagation environment, users’ positions, the
number of users, etc., for a large number of IOS elements.

In the literature, reinforcement learning has served as a
mathematical tool to adapt to unpredictable environments.
Existing works mainly consider static environments and
small-scale RIS elements. In both [7] and [8], the deep rein-
forcement learning (RL) method was introduced to improve
the sum rate and energy efficiency, respectively. Recently,
transfer learning [9] and meta learning [10] have emerged as
promising methods to reduce the data that need to be collected,
thus faster adapting to the varying environment compared to
traditional methods. In [11], the authors design a four-layer
neural network. By transferring the weights of two layers in
the pre-trained model to different target domains divided by
the number of RIS elements, their method minimizes transmit
power with fast convergence. The work [12] introduces the
Expectation-Maximization based meta-learning method and
shows a trade-off between its performance and efficiency.

However, most existing RL-related works [7], [8], [13],
[14] consider a simplified setting where the channel state
information (CSI) and locations of users are static across
time. Once the environment changes, the RL model needs
to be retrained from scratch to update the IOS beamformer,
otherwise, the solution is out-of-date and the performance
is degraded. Though there are some initial transfer learning
or meta-learning based works [11], [12] that transfer the
features learned from one environment to another, they have
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not considered the time-varying dynamic environment where
CSI, location, and the number of users in different time slots
are relevant. Consequently, the proposed approaches may not
fit well when it comes to practice. Besides, most of the works
consider a relatively small scale of intelligent surface elements.
The scalability of the model should also be considered as the
number of RIS elements grows.

Unlike the existing works, we aim to develop an effi-
cient beamforming scheme to address the following practical
concerns:
• Q1: How to adapt to the dynamic case where the channel

information, user positions, and the number of users vary
with time?

• Q2: How to search for a solution efficiently within a
complex solution space brought by a large-scale IOS?

It is not trivial to solve the above issues. First, the high
dimension of the phase shift optimization problem makes the
traditional learning methods infeasible as the continuous action
space is too large. Therefore, it is necessary to develop a
beamforming scheme that is robust against the size of IOS
concerning the sum rate of the system. Second, for a dynamic
environment, the CSI, locations, and numbers of users can vary
with time. It is necessary to consider the dynamic character-
istics of the environment and design a beamforming approach
that converges fast to obtain an up-to-date IOS configuration.

In this paper, we design a novel IOS beamforming scheme
based on the idea of meta learning [10], which mainly focuses
on the development of algorithms that can automatically
learn how to learn, i.e., extracting the common patterns or
correlations across the tasks. Our main idea is to develop the
actor-critic architecture for reinforcement learning by replac-
ing the conventional critic with a novel meta-critic that can
extract common features of all tasks from different environ-
ments. In summary, we contribute to state-of-the-art research
in the following ways by addressing the above challenges.
• We first model the sum rate maximization problem

in a dynamic environment as a Markov decision pro-
cess (MDP) to simultaneously depict the configuration of
IOS and time-related channels. Based on this, we propose
a meta-critic deep deterministic policy gradient (MC-
DDPG) scheme for the IOS-based beamforming given
dynamic channel states and moving users.1 Stemming
from the meta learning [16], a novel meta-critic is
designed which serves as an automotive tool for fast
real-time model parameter generation in new environ-
ments by learning from multiple scenario-specific tasks.

• We design an Explore and Reload procedure in the train-
ing process of our model, in which we set an exploring
factor to add randomness in the solution searching pro-
cess and decay it while training to achieve convergence.
Therefore, it makes our proposed method more robust
and easier to converge to a solution even when there
are numerous IOS elements. Based on such a tailored
meta-learning network structure, only a small amount of
cascaded channel information between the transmitter and

1The proposed scheme can be also applied to the scenario aided by the
reconfigurable intelligent surface, please refer to our previous work [15].

Fig. 1. System model of the IOS-assisted multi-user system.

users is required for training, thereby significantly saving
the pretraining overhead.

• Simulation results show that given a small amount
of channel information, our proposed MC-DDPG out-
performs the traditional RL method and an iterative
algorithm in terms of both the sum rate and the con-
vergence speed in dynamic environments, where CSI,
positions and the number of users vary with time. The
robustness of the MC-DDPG scheme given different IOS
sizes is also verified.

The rest of this paper is organized as follows. Sections II
and III present the system model and problem formula-
tion, respectively. In Section IV, we propose our tailored
MC-DDPG algorithm to solve the sum rate maximization
problem. Simulation results are shown in Section V. Finally,
we draw the conclusions in Section VI.

II. SYSTEM MODEL

In this section, we first describe the IOS-assisted multi-user
communication system and then present the detailed IOS and
channel models.

A. Scenario Description

As shown in Fig. 1, we consider a downlink multi-user
MISO wireless communication system with a M -antenna base
station (BS) serving K users with a single antenna. Because
of the shadowing effect and unexpected fading of propagation
paths, the Line-of-Sight (LoS) channel between the BS and
users is often unstable and suffers from severe fading [17].
To enhance the capacity of the system, an IOS consisting of N
elements is deployed to reflect and refract the transmit signals
simultaneously towards both sides of the IOS. By configuring
the phase shifts of IOS elements, we are able to generate wave
beams with heterogeneous directions.

Based on the scenario described above, we consider a
dynamic communication environment in that the CSI, location
and number of users may vary with time. However, due to the
large scale of IOS elements, it might degrade the speed of
adapting to the rapidly changing environment if we update
the IOS configuration after collecting a large amount of CSI.
As a result, we need an approach that can adjust the phase
shifts of IOS quickly with only a small amount of CSI fed
back from the environment.
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B. Intelligent Omni-Surface Model

Different from the reflecting type meta-surface (i.e.
RIS) [18], IOS can manipulate electromagnetic waves with a
dual function of simultaneously reflecting and refracting sig-
nals. By controlling the biased voltages of each IOS element,
the reflective and refractive waves can be oriented to users.
Each element is sub-wavelength and is capable of performing
2b possible phase shifts to reflect and refract the incident
ray [19]. The dual function of IOS can be expressed by [5]

∆t =

√
1

1 + ϵ
, ∆r =

√
ϵ

1 + ϵ
, (1)

in which ϵ is the refraction-reflection ratio, i.e., the ratio of
the refractive signal to the reflective signal. ∆t and ∆r are the
energy spilt for the reflected and refracted signals, respectively.
The response Γn of the n-th IOS element can be given by

Γn = ∆nqn, (2)

qn =
√

GnFAFDδwδh|γn|2e−jθn , (3)

in which Gn is the antenna gain of the n-th IOS element. γn

refers to the power ratio of the reflective or refractive signal.
FA and FD are the normalized power radiation patterns of
the incident signal and reflective/refractive signal. δw and δh

denote the width and height of each IOS element, respectively.
θn represents the phase shifts of IOS, which can be further
written as θt

n and θr
n indicating reflection/refraction phase

shift. On top of that, because of limitations of hardware design,
the two phase shifts of the same IOS element are coupled with
each other [20],

θt
n − θr

n = C, (4)

where C is a constant determined by the structure of the meta-
surface.

C. Channel Model

The direct channel between the BS and K users can be
denoted as HBU ∈ CK×M . The BS-IOS link and the IOS-user
link can be denoted by HBI ∈ CN×M and HIU ∈ CK×N ,
respectively. According to the Saleh-Valenzuela model [21],
the channel matrices can be expressed by

HBI =
√

S1AIΣBID
H
B , (5)

HIU,k =
√

S2,kAIU,kΣIU,kDH
I,k, (6)

HBU,k =
√

S3,kABU,kΣBU,kDH
B,k, (7)

where DB , DIU,k and DBU,k represent the transmit steer-
ing matrices, while AI , AIU,k and ABU,k denote the
receive steering matrices. The i-th columns of each D
are channel steering vectors, which can be expressed
by f(N, θ) = 1√

N
[1, ejπθ, . . . , ej(N−1)πθ]H , where N

is the number of antennas and θ is the angle-of-
arrival (AoA) or angle-of-departure (AoD). The matri-
ces are set as ΣBI = diag(

√
N2Nb

I1
[λBI,1, . . . , λBI,I1 ]),

ΣIU = diag(
√

N2Nu

I2
[λIU,1, . . . , λIU,I2 ]) and ΣBU =

diag(
√

NbNu

I3
[λBU,1, . . . , λBU,I3 ]), where I1, I2 and I3 are the

numbers of links of each channel. For the i-th link, λBI,i, λIU,i

and λBU,i denote the channel gains. We assume that each
channel of HBU ,HBI ,HIU consists two components, the
LoS and Non-Line-of-Sight (NLoS) channels, respectively.

For users in the reflective or refractive zone of the IOS, the
LoS component of the equivalent channel from the BS to user
k can be given as

HLoS
k = ∆uHLoS

IU,kΘHLoS
BI + HLoS

BU,k, k ∈ Ku, (8)

in which Θ ∈ CN×N = diag([ejθ1 , · · · , ejθN ]),
[ejθ1 , · · · , ejθN ] being the phase shift configuration of IOS
elements. Ku refers to the set of users, and u ∈ {r, t} refers
to the reflective and refractive users, respectively. Similarly,
we can give the NLoS component as

HNLoS
k = ∆uHNLoS

IU,k ΘHNLoS
BI + HNLoS

BU,k , k ∈ Ku, (9)

We assume that the equivalent channel of each user follows
the Rician distribution [22] with a factor KR, i.e.,

Hk =

√
KR

KR + 1
HLoS

k +

√
1

KR
HNLoS

k . (10)

Such a channel model can be further modeled as a
finite-state Markov channel [23]. Specifically, we fix the LoS
component and discretize the NLoS channel HNLoS into
L levels, i.e., H = H1, . . . ,HL. The AoAs and AoDs of
the NLoS channel on each level are random. The transition
probability matrix is defined as

P =

p1,1 · · · p1,L

...
. . .

...
pL,1 · · · pL,L

 , (11)

where the transition probability pl,l′ can be written as

pl,l′ = Prob[Ht+1 = Hl′ |Ht = Hl],Hl,Hl′ ∈ H. (12)

The equation above indicates that given the channel state
Ht = Hl at time slot t, pl,l′ refers to the probability of channel
state at the next time slot Ht+1 transiting from Hl to Hl′ .
Without loss of generality, we generate P randomly to depict
the time-varying NLoS channel.

III. PROBLEM FORMULATION

In this section, we will first formulate the sum rate
maximization problem, and then explain why and how we
reformulate it into a MDP to develop a reinforcement learning
method.

A. Sum Rate Maximization Problem

To better depict the influence brought by dynamic environ-
ments, we consider the sum rate maximization problem in T
time slots, each of which has a duration of Φ. We first give
the definition of the equivalent channel between user k and
BS at time slot t as follows,

Hk,t = ∆kHIU,k,tΘHBI,t + HBU,k,t, (13)

where ∆k can be ∆r or ∆t determined by which zone the
user is in. The received signal of user k in time slot t can be
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written as

yk,t = Hk,t

K∑
j=1

V j,txj + nk,t, (14)

in which V j,t refers to the digital beamforming vector from
the BS to the j-th user. xk denotes the symbol BS sends to user
j. nk,t represent Gaussian noise which follows N(0, σ2

k,t).
The Signal to Interference plus Noise Ratio of user k can
be expressed as

γk,t =
|Hk,tV k,txk|2

|Hk,t

∑K
j=1,̸=k V j,txj |2 + σ2

k,t

, (15)

from which we can express user k’s data rate as,

Rk,t = |Φlog(1 + γk,t)|. (16)

The sum rate maximization problem can be formulated as

P1 : max
V t,Θt

T∑
t=1

K∑
k=1

Rk,t,

s.t. T r(V H
t V t) ≤ PT , t = 1, · · · , T,

∀θn ∈ Θt, θ
t
n − θr

n = c, (17)

where PT refers to the total transmit power. It is a joint
optimization problem of digital beamforming and IOS config-
uration, which is NP-hard [24]. Thus, we partition this problem
into two sub-problems and solve them sequentially. Given
Θt, through the zero-force (ZF) beamforming2 and water-
filling algorithm [26], we can get a sub-optimal solution of
V t directly. Let H denote the equivalent channel between the
BS and all users, then the beamformer can be given by

V t = HH(HHH)−1P
1
2 , (18)

where P = diag([p1, p2, . . . , pM ]) represents transmit power
on each antenna. The optimal power allocation is solved by
water-filling [27] as

pk =
1
νk

max

{
1
µ
− νkσ2, 0

}
, (19)

where νk is the k-th diagonal element of
(HH(HHH)−1)HHH(HHH)−1, and µ is set for
normalization, such that pk satisfies

∑M
k=1 pk = PT .

After V t is settled, P1 can be rewritten as

P2 : max
Θt

T∑
t=1

K∑
k=1

Rk,t.

∀θn ∈ Θt, θ
t
n − θr

n = c. (20)

The whole solving process embedded in P2 can be further
depicted as follows, i.

1) At time slot t, acquire the equivalent channel H;
2) Solve the V t by (18) and (19);

2Other digital beamforming methods like Minimum Mean Squared
Error (MMSE) [25] can also be adopted towards this problem.

3) Solve the sum rate maximization sub-problem

max
Θt

K∑
k=1

Rk,t,∀θn ∈ Θt, θ
t
n − θr

n = c (21)

4) Go to the next time slot t + 1 and return to i.
In the next subsections, we will show why and how we

reformulate P2 into a MDP, based on which we will then
propose the MC-DDPG algorithm to solve it in Section IV.

B. Motivation of MDP

For such an optimization problem in a time-varying com-
munication environment, it can be reformulated into a MDP
for the following three reasons.

1) The communication environment that we consider is
dynamic like the channel state and user’s number, loca-
tion, and the number of users, and these characteristics
are time-related. Thus we choose to reformulate it into
an MDP to better depict how these characteristics vary
with time.

2) Secondly, in the practical application of IOS-assisted
communication, we are expected to configure the IOS
shifts in real time. Once we get the CSI, we adjust the
IOS phase shifts, which can be easily modeled as a MDP.

3) Thirdly, introducing a machine learning method can
improve the efficiency of searching for solutions com-
pared to traditional iteration-based approaches. But if
we want to adopt a learning method to solve this
problem, one unavoidable difficulty is that the labeled
dataset is missed. In this case, unsupervised learning
which does not require labeled datasets is more suitable.
However, traditional unsupervised learning like Principle
Component Analysis (PCA) [28] cannot solve it. That
is the main motivation why we try to reformulate P1
into a MDP to apply RL.

Next, we will illustrate the MDP reformulation of the opti-
mization problem in detail.

C. MDP Reformulation

Given the time-varying characteristics of channels, we refor-
mulate P2 as a MDP consisting of the following components.
1)

1) Action: The action in the MDP is the configuration of
phases of all IOS elements, defined by

at = Θt,∀θt ∈ Θt, θt ∈ (−π, π). (22)

2) State: The state in the MDP refers to the channel
states and the IOS phase shift matrix configuration. The
channel state is measured by the equivalent channel
between the BS and users, i.e.,

Ht = diag(∆)HIU,tΘt−1HBI,t + HBU,t, (23)

where ∆ = [∆1, · · · , ∆K ] refers to the energy split
of each user depending on whether they are located in
the reflective or refractive zone. The IOS phase shift
configuration in each time slot t− 1 is given by Θt−1,
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with Θ0 = [0, · · · , 0] being the initial configuration.
Then the state of the MDP can be defined by

st = {Ht,Θt−1}. (24)

The motivation behind the design of the state is that we
aim to learn the configuration of IOS according to the
three component channels, i.e., HIU , HBI and HBU

without measuring them separately. Thus, by adding
the previous configuration of IOS Θt−1 to the state
function, our model can learn how to decouple the three
components from the equivalent channel automatically.

3) Reward: The reward of the MDP is consistent with the
objective value of P2, i.e., the sum rate of all users in
time slot t. To avoid the high variation issue brought by
the high value of the reward [29], we multiply the sum
rate by a coefficient η, and the reward can be expressed
by

rt = η

K∑
k=1

Rk,t. (25)

Our goal is to normalize the reward into the range
of [0, 1] to get a stable and efficient boost on the
performance of the model. Thus, we adopt the approach
of range normalization [30]. We first conduct thousands
of pre-trainings with different initial configurations of
IOS to estimate the possible minimum and maximum
sum rate per time slot as Rmin and Rmax, then the
coefficient η can be determined by

η =
∑K

k=1 Rk,t − Rmin∑K
k=1 Rk,t(Rmax − Rmin)

(26)

The accumulated reward at step t is given by rt =∑T
t′=t γt′−trt′ , where γ ∈ [0, 1] is the discount factor.

We remark that the target of reinforcement learning is
identical to the optimization problem, which is given as
the following proposition:

Proposition 1: If γ = 1, then the objective of the rein-
forcement learning over the designed MDP, i.e., reward
maximization, is equivalent to the target of problem P2.

Proof: Please see Appendix VI. □
We remark that the above defined state, action and reward

satisfy the Markov property, i.e., the distribution of the next
state only depends on the current state and action. The next
state st+1 = {Ht+1,Θt} consists of two terms, in which
the second term is exactly our current action at = Θt and
completely determined by it. As for the first term, according
to Ht+1 = diag(∆)HIU,t+1ΘtHBI,t+1 + HBU,t+1, it is
determined by the current action and three components of
channel HIU , HBI and HBU at time t + 1, which include
the LoS and NLoS channels as defined in Section II-C. The
LoS channel is determined by the location of the user and
we assume that the next location of each user is completely
determined by the current location. The NLoS channel has
already been modeled as a Markov channel as in (11) and (12).

The whole process is shown in Fig. 2. At time slot t, the BS
acquires the equivalent channel information Ht via the pilot
signals [31] and records the IOS configuration Θt−1 at the

Fig. 2. MDP Process of IOS configuration.

previous time slot t − 1. It then performs the ZF or MMSE
method [26] to determine the digital beamforming vector V t.
Then it determines the action at, i.e., the IOS phase shifts Θt

at current time slot t, to maximize its expected reward in (25).
The BS then transmits the signals to users and obtains the
reward of the current time slot t, i.e., the sum rate of all users.
The purpose of the whole process is to maximize performance
over a period, in which the environment keeps changing from
one time slot to another.

Remark 1: As defined in the state of MDP, we only need to
acquire the equivalent channel information from BS to users,
i.e., Ht. That is to say, our proposed approach does not require
specific two-hop channel information of HIU , HBI and HBU .

According to the remark, the overall pilot overhead of
channel estimation is K. Compared to the protocol in [32],
where the overhead is K + N + ⌈N

M ⌉(K − 1), our proposed
scheme reduces the burden of channel estimation especially
when the surface size N is very large. In the simulation
result in Section V-C, we will show that using the equivalent
channel estimated through pilot signals does not degrade the
performance compared to other estimation methods.

IV. MC-DDPG ALGORITHM DESIGN

In this section, we first explain our motivation for using
the meta-critic learning method, then introduce the proposed
MC-DDPG framework to solve the sum rate maximization
problem, as well as illustrate its design with more details.

A. Motivation of Meta-Critic Reinforcement Learning

Different reinforcement learning methods have been utilized
in RIS-enabled beamforming to configure the phase shifts of
intelligent surface elements as in [13]. However, in real-world
dynamic settings, they may face the following challenges.

1) Difficulty to obtain datasets: To train a reliable IOS
beamforming scheme, we need to collect a sufficiently
large amount of CSI from the environment and sum
rate feedback from users once the environment changes,
which consumes too much time and power.

2) Age of configuration: In the dynamic scenario, the com-
munication environment varies with time. Thus, when
the settings of the task change, traditional RL methods
may take a long time to be re-trained and converge to a
sufficiently good IOS configuration solution, which may
be out-of-date as the environment changes rapidly.
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To deal with these challenges, we aim to train a learning
model capable of “learning to learn”. That is to say, different
from traditional RL methods which can only learn from and
perform well on a single task, our proposed method can
automatically identify the task and update its model quickly to
converge with fewer data collected, as long as it is pre-trained
well on multiple tasks.

To establish such a framework, we employ actor-critic as
the essential structure. The two components, actor and critic,
approximately fit into the role of “learning” and “learning to
learn”, respectively. The actor gives action according to the
current state, which is then evaluated by the critic to give a
Q-value fed back to the actor, thus it can learn to make better
choices [33]. We design the meta-critic to extract features from
all the different tasks and learn how to evaluate the actions of
different actors on different tasks. It can be used subsequently
to guide the action of the actor on a newly-given task.3

B. MC-DDPG Algorithm Framework

A hierarchical design is shown in Figs. 3a and 3b, consisting
of the meta-learning phase and online learning phase. Unlike
the traditional actor-critic framework [33] where each actor
is paired with a critic, we design a meta-critic to perform as
the aggregate critic replacing critics of all single actors. The
experience from all actors will be sent to one meta critic for
updating, which is the key to “learn to learn”. Below we first
present the key components of the MC-DDPG framework.

1) Task: The blue block refers to the task of RL, which
denotes a process of the BS maximizing the sum rates of all
users in a specific wireless environment. For different tasks,
the channel states and locations of users are various.

2) Actor: The grey block in Fig. 3a and Fig. 3b represents
the actor of the RL method. Each actor corresponds with a
specific task. It receives the state information from task i as
defined in (24), and outputs correspondent action from learned
policy. As the equivalent channel matrix H is of complex
value, we first divide it into real and imaginary parts, which
are combined together with the IOS configuration Θ to be fed
into the policy network illustrated in detail in Section IV-C.

3) Meta Critic: The meta-critic can be divided into two
parts, i.e., a task recognition network and a critic network.
Given a specific task, the task recognition network extracts the
history information from the replay buffer and generates the
task-recognition Q-value that represents the feature of the task,
i.e., the characteristics of the wireless environment. The task-
recognition Q-value is subsequently sent to the critic network
together with the state-action information of this task. The
critic network outputs a task-specific Q-value to iteratively
update the actor networks [16], which can be viewed as the
evaluation of the IOS configuration in the current wireless
environment.

Meta Learning Process Description: The meta-learning
phase can be described as follows: First, for each task i, its
current state si

t is fed to actor i. Then the actor refers to its

3In fact, this process can be viewed as the relationship between teacher
and students. We aim to train a teacher well enough so that he/she is able to
instruct students to improve their performance.

learned policy π(a|si
t) to generate an action ai

t. Task i executes
the action and receives the reward ri

t from the environment,
then the state-action-reward information < si

t, a
i
t, r

i
t > will be

stored in the replay buffer. Meanwhile, the meta critic collects
the history information of task i, i.e., Hi

t,
4 from the replay

buffer together with the state-action pair < si
t, a

i
t > to give

a task-specific Q-value which can further update the actor
networks. The meta-critic is updated by the trajectories of all
tasks in the replay buffer deployed in the BS, which will be
discussed in detail in Section IV-C.

In the online learning phase, for a newly-coming real-time
task, the critic is kept static. Therefore, it is directly used to
evaluate the action of the actor and update it, while the update
of the actor network is just the same as that of the meta-
learning phase.

C. Detailed Design of MC-DDPG

In this subsection, we first explain the essential parts of
our proposed MC-DDPG algorithm, including the tailored
design of the meta-critic and actors. Then the Explore and
Reload procedure designed to assist in the solution searching
is also introduced. Finally, the analysis of the complexity of
our proposed method is given.

1) Tailored Description of Meta Critic and Actors: We
apply the TD3 structure [34] to design our meta-critic such
that two Q-networks are introduced for accurate Q-value
estimation. We use two neural networks (NN) with weights
ω1, ω2 as the Q-networks to parameterize the meta critic, and
each actor of task i is also modeled as an NN policy π(a|si

t, θ
i)

with weights θi.
In the dynamic case, the distribution of trajectories, i.e.,

the time series of the state-action pairs {< s1, a1 >
, · · · , < st, at >, · · · }, from different tasks may deviate.
Thus, to extract aggregate features from different wireless
environments, we cannot directly use the structure of the
traditional critic network. Instead, we are supposed to design a
critic that is capable of identifying different environments by
collecting the history of time-related series of them, including
CSI, IOS configurations, and sum rates. For that purpose,
since each task refers to a specific wireless environment,
we introduce the Long-Short Term Memory (LSTM) net-
works [35] as a task recognition network that outputs the
task recognition Q-value. Following the interaction process in
Fig. 2, we define the task i’s history Hi

[u∼v] as a segment
of tuples of state, action, and reward from step u to step
v, i.e., Hi

u∼v = {si
u, ai

u, ri
u, . . . , si

v, ai
v, ri

v}. For simplicity,
we directly use the most recent t examples as the input
of the task recognition network, i.e., Hi

t = Hi
t−t∼t−1

=
{si

t−t
, ai

t−t
, ri

t−t
, si

t−1, a
i
t−1, r

i
t−1}.

We adopt a four-layer full connected network (FCN) to
learn the features from the current state-action pairs and the
task recognition Q-value from LSTM. The meta-critic first
recognizes the coming task with a task-recognition Q-value
as the output, and then evaluates the configuration of IOS
in a specific environment by giving a task-specific Q-value.

4The definition of Hi
t can be referred to following Section IV-C.1.
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Fig. 3. (a)Framework of MC-DDPG: Meta Training Phase (b) Framework of MC-DDPG: Online Training Phase.

We desire to pre-train a meta-critic that is able to instruct the
actor to rapidly adapt to any new tasks, described below

Q̃k = fLSTM (Hi
[t−t,t−1]; ω

LSTM
k ), k = 1, 2, (27)

Qk(si
t, a

i
t,Hi

[t−t,t−1]; ωk)

= fFCN (si
t, a

i
t, Q̃k; ωFCN

k ), k = 1, 2, (28)

where the Q̃ denotes the task recognition Q-value, and the
Q-value in (28) represents the task-specific Q-value.

For the actor, to avoid the overfitting problem of the
complex network, we use FCN as our policy network. It takes
current state st as input and outputs a deterministic action

π(a|si
t; θ

i) = fFCN (si
t; θ

i). (29)

2) Loss Function: To train the policy and value networks,
we first define the loss functions of the actor and critic
networks, respectively, and then minimize them based on the

backpropagation method. For the meta critic, we use temporal
difference (TD) error of all tasks as the loss function [36].
It depicts the difference between the estimated and real Q-
value, by minimizing which we can get a critic network that
can better evaluate the current configuration of IOS.

L(ωk) =
1
T

I∑
i=1

Eπ(θi)[Q(si
t, a

i
t,Hi

[t−t,t−1]; ωk)

− (rt + γ min
k

Q(si
t+1, a

i
t+1,Hi

[t−t+1,t]; ωk))]2,

k = 1, 2, (30)

where T refers to the number of tasks. TD error
in (30) represents the similarity between estimated Q-
value Q(si

t, a
i
t,Hi

[t−t,t−1]
; ωk) and target Q-value (rt +

γmink=1,2Q(si
t+1, a

i
t+1,Hi

[t−t+1,t]
; ωk)) of two critic net-

works, and so its minimization can help meta critic better
estimate Q-value of all tasks. As for the actor of each task,
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the loss function can be represented by the negative Q-value

J(θi) = Eπ(θi)[−Q(si
t, a

i
t,Hi

[t−t,t−1]; ω1)]. (31)

3) Parameter Update: The parameters update can be
expressed by

ωt+1 = ωt − ρ∇ωL(ω), (32)

θi
t+1 = θi

t − ρ∇θiL(θi), (33)

where ρ denotes the learning rate and the gradient in (32)
and (33) can be given by [33]

∇ωk
L(ωk) =

1
T

I∑
i=1

[2L(ωk)∇ωk
(Q(si

t, a
i
t,Hi

[t−t,t−1]; ωk)

− γ min
k=1,2

Q(si
t+1, a

i
t+1,Hi

[t−t+1,t]; ωk))],

(34)

∇θiJ(θi) = −Q(si
t, a

i
t,Hi; ωk))∇θi log π(a|si

t, θ
i) (35)

The target networks can be soft-updated [37] as below:

ω′k ← τωk + (1− τ)ω′k, k ∈ {1, 2}, (36)

θi′ ← τθi + (1− τ)θi′, (37)

in which τ is the hyperparameter of soft-update, which deter-
mines the extent of variation of the model parameters.

4) Explore & Reload Procedure for IOS Configuration:
Note that in our system we assume IOS with numer-
ous elements, thus our considered problem P2 has a
high-dimensional action space, making the convergence speed
a main concern. In this case, it is rather hard to set the
learning rate. Thus, we design a stochastic Explore and Reload
procedure where an exploration noise e is introduced to
enhance the randomness of the action, i.e., the choice of phase
shift of each IOS element, thereby avoiding the accumulated
deviation error from the optimal point.

at = π(a|st) + e, (38)

where e ∼ N (0, ϵ), ϵ refers to the exploration factor. Before
training, we initialize ϵ as ϵ0. Then in each training episode,
we record the maximum reward Rmax and the corresponding
model of policy πmax. We also set two thresholds Threward

and Theps. For the sake of convergence, we set ϵ to be
exponentially decaying as the number of episodes grows until
convergence. If the current reward declines beyond Threward

compared to Rmax, i.e.,

Rmax −Rcurrent > Threward (39)

or Rmax has not been updated for Theps episodes, the actor
reloads the best recorded model πmax and resets the explo-
ration factor ϵ = ϵ0 to restart the exploration. This process
avoids the problem that the model may explore incorrect paths
if the exploration factor is set too high. By reloading the best
model πmax, we can reorient the model back to the most
optimal state it has explored, initiating exploration from a
new direction. Combined with the decaying learning rate and
exploration factor, it can help the model converge to the most
optimal state of what it has explored.

We remark that there exists a trade-off between convergence
speed and achievable sum rate depending on the Explore &
Reload process. If we allow more exploration of the model
by increasing the exploration factor and reload thresholds, its
performance may oscillate more and it takes longer time for
it to converge. Thus, the convergence speed drops. However,
with more exploration, it is more likely that the model can
find better policies for IOS configuration to obtain a higher
achievable sum rate. So we can say that higher achievable sum
rates and lower convergence speed come with higher explo-
ration noise and vice versa. This trade-off can be observed in
Section V-B.

Algorithm 1 MC-DDPG Algorithm for IOS-Assisted Multi-
User Communication

1: Meta Training Phase:
2: input: Multiple task samples from different wireless envi-

ronments.
3: Initialize: (For each task i) Critic Networks Qω1 , Qω2 ,

and actor network πθi with parameters ω1, ω2, θ
i; Target

Networks ω′1 ← ω1, ω
′
2 ← ω2, θ

i′ ← θi;Replay Buffer
Bi;

4: for eps in range(MaxEpisode) do
5: Sample T tasks and initialize states s1

0, · · · , sT0 with
initial channel information and default IOS configurations.

6: for t in range(MaxStep) do
7: for each task i do
8: Configure IOS by (38) and get reward ri

t and
next state si

t+1.
9: Store the transition tuple into replay buffer Bi.

10: Sample a batch from the replay buffer Bi.
11: Update Meta Critic by (30) and (32).
12: Update θi by (31) and (33) with delay.
13: Update target networks by (36) and (37) with

delay.
14: for each task i do
15: Follow the procedure described in Section IV-C.4.
16: Output: Well-trained meta critic ω⋆.
17: ———————————————————————–
18: Online Training Phase:
19: input:A new task from a new wireless environment; Well-

trained meta critic ω⋆.
20: Initialize: Policy network θ0; Replay Buffer B;
21: for eps in range(MaxEpisode) do
22: Initialize system state s0 with initial channel infor-

mation and default IOS configurations.
23: for t in range(MaxStep) do
24: Configure IOS by (38) and get reward rt and next

state st+1.
25: Store transition tuple into replay buffer B.
26: Sample a batch from the replay buffer B.
27: Update θ by (31) and (33).
28: Follow the procedure described in Section IV-C.4.
29: Output: The trained policy of actor θ⋆.

D. Algorithm Description

We summarize the proposed MC-DDPG algorithm in
Alg. 1, which includes two phases: meta-training and online
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learning. At the beginning of meta-training, we first initialize
the network parameters and replay buffer. For each episode,
we select T learning tasks and initialize them (Line 5), then
conduct MaxStep steps. In one task at each step, we select
an action by policy to set the IOS configuration and add
exploration noise on it before sending it to IOS with a reward
and the next state fed back (Line 8). The transition tuple is
stored in the replay buffer in Line 9. Lines 10-11 are the
process of updating the meta critic, while Lines 12-13 aim to
update the parameters of the actor policy network of task i with
some delay. Line 15 denotes the model reloading process we
described in Section IV-C.4. The output of the meta training
is a well-trained meta critic ω⋆ (Line 16).

In the online learning phase with a newly coming task,
we directly use well-trained meta critic ω⋆ to estimate the
Q-value, and thus, only the actor needs to be trained. We first
initialize the policy network and replay buffer (Line 20). The
actor network determines the current IOS configuration and
stores the tuple < st, st+1, at, rt > in the buffer as shown
in Lines 8-9. The actor is then updated and reloaded (Lines
26-28). The output of online learning is the trained policy of
actor θ⋆ (Line 29), which determines the IOS configuration
scheme. The convergence analysis of the proposed MC-DDPG
is given below:

Proposition 2: The MC-DDPG algorithm can converge
guaranteed by the decaying exploration noise and learning rate.

Proof: Please see Appendix VI. □

E. Computation Complexity Analysis of MC-DDPG

The computing process of MC-DDPG can be divided into
two parts: the actor and the meta-critic. For the actor whose
policy is estimated by an FCN, we define na,v as the number
of neurons in the hidden layer v. As the state and action
space is 2MK and N respectively, the time complexity of
actor network is O(2MKna,1+

∑V3−1
v=1 na,vna,v+1+Nna,V3),

where V3 refers to the number of the hidden layers of FCN.
Concerning the meta-critic, we first consider the complexity

of the LSTM network, which is determined by the number
of memory cells and the size of each layer. We assume that
the length of the time series is t̄, which is also the number
of memory cells. Meanwhile, we denote nl,v as the size of
layer v, while V1 refers to the number of hidden layers. Then
the computation complexity of LSTM can be expressed by
O(4t̄[(2MK + N + 1)nl,1 +

∑V1−1
v=1 nl,vnl,v+1]) [38]. As for

the critic network using FCN, we follow the analysis of the
actor network and represent it as O((2MK + N + 1)nc,1 +∑V2−1

c=1 nc,vnc,v+1 + nc,V2), where V2 and nc,v refer to the
number of hidden layers in critic network and the size of each
layer v respectively.

According to the above analysis, we now can give
the sum-up computation complexity of MC-DDPG as
O(α1(MK) + α2N + α3), in which α1 = 2(na,1 +
4t̄nl,1 + nc,1), α2 = 4t̄nl,1 + nc,1 + na,V3 , α3 =
4t̄(nl,1 +

∑V1−1
v=1 nl,vnl,v+1) + nc,1 +

∑V3−1
v=1 na,vna,v+1 +∑V2−1

c=1 nc,vnc,v+1 + nc,V2 . It can be seen that once the
structure and parameters of networks are determined, the

TABLE I
COMPUTATION COMPLEXITY COMPARISON OF METHODS

complexity of MC-DDPG increases linearly with the problem
size of P2, i.e., MK and N .

We compare the computation complexity of our method
with the two benchmarks introduced in Section V-A, i.e., TD3
and ZF-Exhaust. For TD3, the structure of the actor is the
same as our proposed MC-DDPG, while its critic does not
include the component of LSTM. Thus, its complexity can
be expressed by O(α′1(MK) + α′2N + α′3),

5 in which α′1 =
2(na,1 + nc,1), α2 = nc,1 + na,V3 , α3 =

∑V3−1
v=1 na,vna,v+1 +∑V2−1

c=1 nc,vnc,v+1 + nc,V2 . For ZF-Exhaust, assuming that
the phase shift of each surface element is D-bit quantified,
it needs 2ND iterations to completely enumerate all the pos-
sible configurations of IOS, thus the computation complexity
is O(β2N ) where β = 2D.

The comparison of computation complexity is summarized
in Table I, which is verified by our simulation results in
Section V-B.

V. SIMULATION RESULTS

In this section, we evaluate the proposed MC-DDPG
approach in dynamic settings. The performance of MC-DDPG
is compared to two benchmark algorithms including a state-
of-the-art RL method and a traditional optimization method.

A. Simulation Setup

The major parameters of the simulation are summed up in
Table II. We consider a base station with 8 antennas, which
is the typical number of antennas of a macrocell. The whole
system works at the sub-6G band in 5G New Radio [39], with
5.9 GHz as the central frequency. We set the transmit power to
the typical maximum output power of 23 dBm, and the noise
power spectral density to -95 dBm/Hz according to [40]. The
number of IOS elements can be referred to practical prototypes
in [5]. As for the hyperparameters for our meta-learning agent,
we set them to these values through careful training, validation,
and tuning.

The task is assumed to be updated6 every 300 episodes, each
of which consists of 20 time slots. We compare our proposed
scheme with two benchmarks, in each of which the whole
algorithm needs to be initialized and performed again for any
newly-coming task.

1) Twin delayed deep deterministic policy gradient (TD3),
which is a state-of-the-art RL algorithm [34] without the
meta critic. It introduces two Q-networks as the critic for

5Although TD3 and the proposed MC-DDPG have the same complexity in
terms of big O notation, the computation complexity of MC-DDPG is lower.
This is because in the online training phase, MC-DDPG does not require
updating the critic network, whereas TD3 needs to update both the actor and
critic networks.

6Each task corresponds to different channel states, locations, and number
of users. If there is no special statement, each task considers a MISO
communication scenario of 4 users.
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TABLE II
SIMULATION PARAMETERS

Fig. 4. Sum rate performance with respect to the varying channel states.

better estimation of Q-value, which help it to outperform
other RL based methods on many traditional RL tasks.

2) Zero-force Exhausting (ZF-Exhaust), where the digi-
tal beamforming is based on the ZF method, and
the IOS phase shift optimization is performed via the
exhaustion method with discretized phase shifts of IOS
elements [41]. In the following figures, solid lines
(denoted by ZF-Exhaust) are used to represent the sum
rate performance of the currently explored IOS con-
figurations, while dashed lines (denoted by ZF-Exhaust
(Max)) depict the sum rate performance of the best IOS
configurations explored so far.

B. Performance Evaluation

1) Dynamic Channel State:
In Fig. 4, we evaluate how the performance of the pro-

posed algorithm varies with the channel states. Specifically,
we update the transition probability matrix in (11) every
300 episodes,7 i.e., the task is also updated periodically.
As shown in Fig. 4, the proposed MC-DDPG converges
within 50 episodes to provide a better performance within
50 episodes and achieves a higher sum rate compared to the
two benchmarks. This shows that the proposed scheme can
efficiently adapt to rapid environment changes.

2) Varying User’s Locations:

7We choose the number 300 for illustration. It can be extended to an
arbitrary number depending on how fast the environment varies.

Fig. 5. Sum rate performance with respect to varying users’ locations.

Fig. 6. Sum rate performance v.s Speed of User.

In Fig. 5, we evaluate the performance of the proposed
scheme considering mobile users. Still, the locations of all
users change every 300 episodes. It is clearly shown that the
achievable sum rate of MC-DDPG is higher compared to the
two benchmarks, and its time for convergence is significantly
shorter. We can also observe a significant degradation of
ZF-Exhaust as it is subject to random initialization of IOS
phase shifts thus the solution can be harder to search if the
starting point deviates from the optimal too much.

3) Speed of Users:
In this simulation, we assume that for each task between

time slots, the users keep moving. For simplicity, we set
them to move in the same direction, like the x-axis or y-axis.
Each task corresponds to a specific speed for all users, which
means in each time slot the user’s locations are changed by a
constant. As defined in Section V-A, we change the task every
300 episodes following an order that speeds corresponding
to the task increase monotonically. In this case, we can not
use ZF-Exhasut as the benchmark as the users’ locations are
dynamic within each task. Thus, getting a fine static solution
by exhaustively searching the IOS configuration is infeasible.
Thus, another benchmark based on static IOS beamforming is
introduced. We get the initial CSI at the beginning of the first
task, then use the ZF-Exhaust method to search for a solution
and keep it static throughout the whole process.

As shown in Fig. 6, the speed of the three tasks increases
from left to right, which explains why the performance of all
methods drops. With faster speed, the location of the user is
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Fig. 7. Sum rate performance concerning Number of Users.

more heterogeneous, thus it is harder to find a stable solution.
Although on average, it takes a longer time for MC-DDPG
to converge compared to other settings, our proposed method
still shows faster convergence and better performance than
the other two benchmarks, which verifies the robustness for
varying speeds of each user.

We also remark that the duration of each time slot Φ,
is expected to be at least the same as the interval of inter-
actions,8

Φ ≥ ∆t, (40)

where

∆t = RTT + tproc, (41)

which indicates that ∆t depends on the time of processing
tproc and the roundtrip time (RTT). With our device, Φ and
∆t are both set to 0.01s. And in the simulation of Fig. 6, the
distances the users move in each time slot are 0.1m, 0.5m, and
0.8m respectively. Thus the corresponding speeds are 10m/s,
50m/s, and 80m/s when it comes to reality.

4) Entrance/Departure of Users:
In Fig. 7, we consider a dynamic case where users may

leave or enter the cell coverage area from time to time. In this
case, the input size of meta critic is not consistent as state st

has Ht ∈ CK×M component which varies with the number of
users. Without loss of generality, we assume that the maximum
number of users is 8.9 When K < 8, we use zero-padding to
reform the input state st to train the meta critic. In the meta-
learning phase, tasks are set with different numbers of users.
Thus, the well-trained meta-critic can identify the number of
users from the current task and evaluate the action of the actor
correspondingly.

Fig. 7 shows how the sum rate varies when users leave
or enter the coverage of the BS. In task 1, the number of
users is set as 4. For cases where two out of four users leave
and six new users enter the cell coverage at the beginning
of task 2 and task 3 respectively, the MC-DDPG can both
converge very fast compared to other benchmarks, meanwhile

8It refers to the time from one reception of CSI and giving action to the
next reception.

9For the clarity of presentation in the figure we set the maximum number
of users as 8 in case the scale of sum rate becomes too large, the maximum
number of users can be set larger to support more users.

Fig. 8. Sum rate performance v.s Different kinds of CSI with varying numbers
of users.

Fig. 9. (a) Convergence performance of MC-DDPG given different numbers
of IOS elements (b) Achievable sum rate v.s. the number of IOS elements.

providing better performance. This verifies the robustness of
our proposed MC-DDPG against a varying environment.

C. Influence of the Input of the Model

Fig. 8 depicts the achievable sum rate of different inputs
of the model with varying numbers of users, in which the
Equivalent Channel (Proposed) refers to the channel between
BS and users. Complete Channel denotes the complete channel
information including the three components HBI ,HIU and
HBU . Given the complete channel, the state we defined in (24)
changes to st = {HBI,t,HIU,t,HBU,t,Θt−1}.

It is shown that when the number of users is small, our pro-
posed scheme with complete channel information outperforms
the other provided with equivalent channel information as the
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former contains more information. However, when the number
of users increases, its performance drops. This is because when
there are more users the input size of both actor and critic
network with complete channel information is much larger
than that with the equivalent channel (up to 2000 in our setting
with 4 users, compared to 164 with the equivalent channel).
When the dimension of the feature space is too high, it leads to
an overfitting problem and the model’s performance degrades.

D. Influence of the Number of IOS Elements

We simulate the proposed MC-DDPG algorithm with a
single task under a different number of IOS elements. The
simulation results are shown in Fig. 9a and Fig. 9b. The curves
interact with each other because the solution space is much
wider with more IOS elements, and it brings more vacillation
and exploration at first, accompanied by a possible lower
performance. But eventually, IOS with more elements achieves
higher performance, which implies the effectiveness of the pro-
posed meta-critic method against the large-scale IOS-assisted
communication system. It also proves the meaningfulness of
increasing the number of IOS elements and the introduction
of model reloading that eases the instability problem.

VI. CONCLUSION

In this paper, we considered an IOS-assisted communication
system in dynamic environments, for which we proposed the
MC-DDPG beamforming scheme for sum rate maximization
given the limited channel information. By designing and
training a meta critic, the proposed scheme can adapt to
the dynamic environment such as the heterogeneous chan-
nel states, user positions/velocity, and the number of users.
Simulation results show that the online MC-DDPG algorithm
achieves a faster convergence speed and a higher sum rate
compared to the benchmarks. Three conclusions can be drawn
below. First, the designed meta-critic significantly enhances
the IOS-assisted multi-user communications against the user
mobility and the dynamic channel states. Second, there exists
a trade-off between the convergence speed of the proposed
MC-DDPG and the achievable sum rate. Third, our proposed
method is robust against different numbers of IOS elements
with respect to the sum rate of the IOS-aided communications
system.

APPENDIX A
PROOF OF PROPOSITION 1

The objective of the task is to obtain a policy π(a|st)
to maximize the accumulated reward at each step t, which
is equivalent to maximizing the episode expected reward∑T

t=1 γtrt [33]. We just insert the expression of rt in (25)
into it and let γ = 1, then we can get

T∑
t=1

γtrt = η

T∑
t=1

K∑
k=1

Rk,t. (42)

As we have already defined at = Θt, and η is a constant, the
targets of P2 and reinforcement learning task are equivalent.

APPENIDX B
PROOF OF PROPOSITION 2

First, we introduce a lemma that is proved by [42].
Lemma 1: Consider a stochastic process (αt, ∆t, Ft), t ≥

0, where αt, ∆t, Ft : X → R satisfy the equations

∆t+1(x) = (1− αt(x))∆t(x)
+ αt(x)Ft(x), x ∈ X, t = 0, 1, 2, . . . (43)

Let Pt be a sequence of increasing σ-fields such that α0 and
∆0 are P0-measurable and αt,∆t and Ft−1 are Pt-measurable,
t = 1, 2, . . . . Assuming that the following hold:

1.
1) The set X is finite.
2) 0 ≤ αt(x) ≤ 1,

∑
t αt(x) = ∞,

∑
t α2

t (x) < ∞ with
probability 1.

3) ∥E{Ft(·)|Pt}∥W ≤ κ ∥∆t∥W +ct, where κ ∈ [0, 1) and
ct converges to zero with probability 1.

4) V ar{Ft(x)|Pt} ≤ K(1 + ∥∆t∥W )2, where K is some
constant.

Where ∥·∥W denotes the maximum norm. Then, ∆t con-
verges to zero with probability 1.

The following proof is based on the proof finished by
Fujimoto et al. [34]. According to the expression of action-
selection (38) of MC-DDPG, as the exploration noise e is
set to be exponentially decaying with the growth of the
number of episodes until convergence, it converges to zero
with probability 1. Thus, we only need to consider the policy
π(a|st), which is determined by each θi. Note that by (35),
the update of θi depends on the Q-value function of the
current state and action, i.e., Q(si

t, a
i
t,H; w1). That is to say

if for each i, Q(si
t, a

i
t,Hi

t; w1) converges to the optimal value
function Q̂i, the performance of MC-DDPG is guaranteed to
converge.

For each task i, we set Qi
t as the Q-value of this task at

step t, and

P i
t = {Qi

0(w1), Qi
0(w1), si

0, a
i
0,Hi

0, ρ0, r
i
1, s

i
1, a

i
1,· · · , si

t, a
i
t},

(44)

where ρt denotes the learning rate at step t. Applying
Lemma 1, we let X = S×H×A, ∆i

t = Qi
t(w1)−Q̂i, αt = ρt,

where S, H and A refer to the state space, history, and action
space respectively. Let âi = argmaxaQ(si

t+1, a|w1), then we
have

∆t+1(si
t, a

i
t,Hi

t)

= (1− ρt(si
t, a

i
t))(Q(si

t, a,Hi
t|w1)− Q̂i(si

t, a
i
t,Hi

t))

+ ρt(si
t, a

i
t)(r

i
t + γ min(Q(si

t+1, â
i,Hi

t+1|w1),

×Q(si
t+1, â

i,Hi
t+1|w2))− Q̂i(si

t, a
i
t,Hi

t))

= (1− ρt(si
t, a

i
t))∆t(si

t, a
i
t,Hi

t) + ρt(si
t, a

i
t)Ft(si

t, a
i
t,Hi

t),
(45)

where

Ft(si
t, a

i
t,Hi

t)

= ri
t + γ min(Q(si

t+1, â
i,Hi

t+1|w1), Q(si
t+1, â

i,Hi
t+1|w2))

− Q̂i(si
t, a

i
t,Hi

t))
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= ri
t + γ min(Q(si

t+1, â
i,Hi

t+1|w1), Q(si
t+1, â

i,Hi
t+1|w2))

− Q̂i(si
t, a

i
t,Hi

t)) + γQt(si
t, â

i,Hi
t|w1)

− γQt(si
t, â

i,Hi
t|w1) = FQ

t (si
t, a

i
t,Hi

t) + ct, (46)

in which FQ
t = ri

t + γQt(si
t, â

i,Hi
t|w1) −

Q̂i(si
t, a

i
t,Hi

t) is identical with the traditional Deep
Q-learning that use only one network and ct =
γ min(Q(si

t+1, â
i,Hi

t+1|w1), Q(si
t+1, â

i,Hi
t+1|w2)) −

γQt(si
t, â

i,Hi
t|w1).

Let Q′ = ri
t + γ min(Q(si

t+1, â
i,Hi

t+1|w1),
Q(si

t+1, â
i,Hi

t+1|w2)). It can be shown that Q(w1)

Qt+1(si
t, a

i
t,Hi

t|w1)−Qt+1(si
t, a

i
t,Hi

t|w2)

= Qt(si
t, a

i
t,Hi

t|w1) + ρ(si
t, a

i
t)(Q

′ −Qt(si
t, a

i
t,Hi

t|w1))

−Qt(si
t, a

i
t,Hi

t|w2)− ρ(si
t, a

i
t)(Q

′ −Qt(si
t, a

i
t,Hi

t|w2))

= (1− ρ(si
t, a

i
t))(Qt(si

t, a
i
t,Hi

t|w1)−Qt(si
t, a

i
t,Hi

t|w2)).
(47)

Thus Q(w1)−Q(w2) converges to zero, which indicates that
ct also converges to zero. The assumptions of Lemma 1 can
be examined as follows. 1.

1) The MDP defined in our scenario is finite, and so is the
space of history, which verifies assumption 1.

2) The policy we set and decay the learning rate meets the
requirement of assumption 2, as αt = ρt.

3) ∥E{Ft(·)|Pt}∥W =
∥∥∥E{FQ

t |Pt}
∥∥∥

W
+ ct, we have

already shown that ct converges to zero. According to
the basic characteristic of bellman functions and Q-
learning, E[FQ

t |Pt] ≤ γ ∥∆t∥, thus assumption 3 holds.
4) V ar[r(s, a)] <∞,∀s, a, which guarantees that assump-

tion 4 holds.
This shows that for each i, Q(si

t, a
i
t,Hi

t; w1) converges to Q̂i

as ∆t converges to zero with probability 1, which proves the
convergence of MC-DDPG.
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