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Abstract—Capable of reflecting and refracting the incident
signals on both sides simultaneously, the intelligent omnidirec-
tional surface (IOS) has recently been proposed as a promising
solution to enhance the capacity of wireless networks. However,
the large number of IOS elements brings a heavy burden to
the beamforming scheme design, especially for applications that
require a fast response to varying environments. In this paper,
aiming to maximize the sum rate of an IOS-aided multi-user
system via IOS-enabled beamforming design that can rapidly
adapt to dynamic channel states and user mobility, we develop
a novel meta-critic reinforcement learning framework where a
meta-critic network recognizes the environment change and au-
tomatically re-trains of the learning model. A stochastic Explore
and Reload procedure is tailored to reduce the high-dimensional
action space problem. Simulation results show the proposed
scheme can converge to a higher sum rate more rapidly compared
to the benchmark methods in dynamic settings. The robustness
of our scheme against different IOS sizes is also verified.

Index Terms—Intelligent omni-surface, Beamforming, Meta-
learning, Dynamic environments.

I. INTRODUCTION

Recently, the development of metasurfaces has provided
an efficient method to improve network coverage as well
as spectrum efficiency. One typical metasurface, intelligent
omni-surface (IOS), has attracted great attention owing to its
ability of simultaneous signal reflection and refraction towards
target directions [1]. By designing the phase shifts of the IOS
elements, users on both sides of the IOS can be served, thereby
supporting omnidirectional communications.

Though the IOS can significantly enhance the data rate
of multi-user systems, it also induces a heavy computational
burden since the vast number of IOS elements renders the
hybrid beamforming scheme non-trivial where the phase shifts
of all IOS elements should be optimized. This may degrade the
system performance, especially in a dynamic environment that
requires real-time updates of IOS phase shift configuration. It
is thus important to develop an efficient beamforming scheme
to tackle numerous IOS elements adapting to the varying
channel information, users’ positions, etc.

Recently, machine learning-based beamforming schemes
have been explored toward this target. Especially, reinforce-
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ment learning (RL) is often used since it can well depict the
interaction process between the surface and the environment
rather than merely collecting datasets as in supervised machine
learning methods. In [2], the deep reinforcement learning
method was introduced to improve the sum rate of a MISO
system. The work [3] adopted a similar method to maximize
energy efficiency. One mostly recent work [4] introduced
multi-agent reinforcement learning to improve the sum rate
with multiple intelligent surfaces collaboratively.

However, most existing RL-related works either considered
a small-sized metasurface with no more than 32 elements or
a simplified case where the channel information and loca-
tions of users are almost static. In this case, every time the
environment changes, the RL network needs to be retrained
to update the IOS beamformer, which brings inevitably huge
overhead. Moreover, the meta-surface deployed in practice
usually consists of hundreds or thousands of elements, making
it even harder for the beamforming scheme to update. Against
this background, we aim to develop an efficient beamforming
scheme to address practical concerns: (1)How to adapt to
the dynamic case where the channel information and user
positions vary with time? (2)How to deal with the numerous
phase shift variables brought by a large-scale IOS in this case?

In this paper, we propose a meta-critic deep deterministic
policy gradient algorithm (MC-DDPG) to solve the above
issues. We design a meta-critic and pre-train it to collabora-
tively learn from multiple tasks and then apply the meta-critic
to the newly coming task. A stochastic Explore and Reload
procedure is introduced to avoid the solution deviating from
the optimal point due to high-dimensional action space. Simu-
lation results show that our MC-DDPG is able to converge to
a solution close to the optimization faster when environment
changes, compared to the iterative optimization and traditional
RL methods with no meta-critic introduced. Besides, we also
test our algorithm under different numbers of IOS elements,
which proves surfaces with more elements can improve the
performance of communication systems.

The rest of this paper is organized as follows. Section II and
Section III present the system model and problem formulation.
In Section IV, we propose our MC-DDPG algorithm to solve
the defined problem. Simulation results are shown in Section
V. Finally, we draw the conclusions in Section VI.

979-8-3503-1114-3/23/$31.00 ©2023 IEEE 

20
23

 IE
EE

 9
7t

h 
V

eh
ic

ul
ar

 T
ec

hn
ol

og
y 

C
on

fe
re

nc
e 

(V
TC

20
23

-S
pr

in
g)

 | 
97

9-
8-

35
03

-1
11

4-
3/

23
/$

31
.0

0 
©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

V
TC

20
23

-S
pr

in
g5

76
18

.2
02

3.
10

19
95

13

Authorized licensed use limited to: Peking University. Downloaded on August 17,2023 at 06:52:05 UTC from IEEE Xplore.  Restrictions apply. 



II. SYSTEM MODEL

In this section, we first describe the IOS-assisted multi-user
communication system and then present the detailed IOS and
channel models.

A. Scenario Description

As shown in Fig. 1, we show a downlink multi-user MISO
wireless communication system with a M -antenna BS serving
K users equipped with one antenna. Due to the shadowing
effect brought by obstacles like tall buildings and unexpected
fading of propagation paths, the Light-of-Sight (LOS) channel
between the BS and users is often unstable and suffers from
severe fading. To improve the performance of the system, an
IOS consisting of N elements is deployed between the users
and the BS to reflect or refract the transmit signals towards
both sides of it. We consider different dynamic cases where
the channel states and locations of users may vary with time.

B. Intelligent Omni-Surface Model

Different from the reflecting type metasurface (also known
as RIS), IOS can manipulate electromagnetic waves with
a dual function of simultaneously reflecting and refracting
signals. Each element of IOS is a sub-wavelength with the
size of δw × δh and is capable of performing 2b possible am-
plitude/phase shifts to reflect and refract the incident ray [5].
The dual function of IOS can be expressed by [6]

∆t =

√
1

1 + ϵ
,∆r =

√
ϵ

1 + ϵ
, (1)

in which ϵ is the refraction-reflection ratio. ∆t and ∆r are
the energy spilled for the reflected and refracted signals,
respectively. The response Γn of the n-th IOS element can
be given by

Γn = ∆nqn, (2)

qn =
√
GnFAFDδwδh|γn|2e−jθn , (3)

in which Gn is the antenna gain of the n−th IOS element. γn
is refer to the power ratio of the reflective or refractive signal.
FA and FD are the normalized power radiation patterns of the
incident signal and departure signals determined by the angles
between the arrival/departure signals and the x-axis.

Fig. 1. System model of the IOS-assisted multi-user system

C. Channel Model

We denote the whole channel of the IOS-assisted system
from two parts, of which the first is the direct channel between
the BS and K users as HBU ∈ CK×M . The two-hop reflec-
tive/refractive channel that corresponds to the BS-IOS link and

the IOS-user link can be denoted by HBI ∈ CN×M and
HIU ∈ CK×N , respectively. According to Saleh-Valenzuela
model [7], the channel matrices can be expressed by

HBI =
√
S1AIΣBID

H
B , (4)

HIU,k =
√
S2,kAIU,kΣIU,kD

H
I,k, (5)

HBU,k =
√
S3,kABU,kΣBU,kD

H
B,k, (6)

where DB ,DIU,k,DBU,k and AI ,AIU,k,ABU,k represent
the transmit/receive steering matrices. The i-th columns
of each D and A are channel steering vectors, it can
be expressed by f(N, θ) = 1√

N
[1, ejπθ, . . . , ej(N−1)πθ]H ,

in which N is the number of antennas and θ is the
angle-of-arrival (AoA) or angle-of-departure (AoD). We
set the matrices ΣBI = diag(

√
NNb

I1
[λBI,1, . . . , λBI,I1 ]),

ΣIU = diag(
√

NNu

I2
[λIU,1, . . . , λIU,I2 ]) and ΣBU =

diag(
√

NbNu

I3
[λBU,1, . . . , λBU,I3 ]), where I1, I2 and I3 are the

numbers of links of each channel. For the i-th link, λBI,i, λIU,i

and λBU,i denote the channel gain.
For users in the reflective or refractive zone of the IOS, the

LoS component of the equivalent end-to-end channel from BS
to user k can be given as

HLoS
k = ∆uHIU,kΘHBI +HBU,k, k ∈ Ku, (7)

in which Θ = diag([ejθ1 , · · · , ejθN ]), [ejθ1 , · · · , ejθN ] being
the phase configuration of IOS elements. Ku refers to the set
of users, while u ∈ {r, t} refers to the reflective and refractive
users respectively.

We assume that the equivalent channel of each user follows
the Rician distribution, i.e., Hk consists of both LoS and NLoS
components,

Hk =

√
K

K + 1
HLOS

k +

√
1

K
HNLOS

k , (8)

where K is the Rician factor.
Based on the above channel model, we further construct

Finite State Markov Channel (FSMC). We choose to fix the
LOS component and discretize the NLOS channel HNLOS

into L levels, i.e., H = H1, . . . ,HL. The AoAs and AoDs
of NLOS channel on each level are generated randomly. The
transition probability matrix is defined as

P =

p1,1 · · · p1,L
...

. . .
...

pL,1 · · · pL,L

 , (9)

where the transition probability pl,l′ can be written as

pl,l′ = Prob[Ht+1 = Hl′ |Ht = Hl],Hl,Hl′ ∈ H. (10)

The equation above indicates that given the channel state
Ht = Hl at time slot t, pl,l′ refers to the probability of channel
state at the next time slot Ht+1 transiting from Hl to Hl′ .
Without loss of generality, we generate P randomly to depict
the time-varying NLoS channel.
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III. PROBLEM FORMULATION

In this section, we will formulate the sum rate maximization
problem, and then reformulate it into a Markov decision
process (MDP) to develop a reinforcement learning method.

A. Sum Rate Maximization Problem

We consider the sum rate maximization problem in T time
slots, each of which has a duration of ∆T . In every time
slot, the channel state keeps stable, while between different
time slots. The received signal of user k in time slot t can be
written as

yk,t = (∆kHIU,kΘHBI +HBU,k)

K∑
j=1

V j,tmj + nk,t, (11)

where ∆k could be ∆r or ∆t determined by whether the user
is receiving a reflective or refractive signal. V j,t refers to the
digital beamforming vector from BS to j-th user.mk denotes
the symbol BS sends to user j.nk,t represent Gaussian noise
which follows N(0, σ2

k,t).The Signal-to-Noise(SNR) of user k
can be expressed as

γk,t =
|(∆HIU,kΘHBI +HBU,k)V k,tmk|2

|(∆HIU,kΘHBI +HBU,k)
∑K

j=1,̸=k V j,tmj |2 + σ2
k,t

,

(12)
from which we can express user k’s data rate as,

Rk,t = |∆T log(1 + γk,t)|. (13)

The sum rate maximization problem can be formulated as

P1 : max
V t,Θt

T∑
t=1

K∑
k=1

Rk,t,

s.t.T r(V H
t V t) ≤ PT , t = 1, · · · , T,

(14)

where PT refers to the total transmission power. Given Θt,
through zero-force (ZF) beamforming and water-filling algo-
rithm [8], we can get a sub-optimal solution of V t directly.

B. MDP Reformulation

For a fixed digital beamforming scheme such as the zero-
forcing [8] or MMSE one, we can rewrite P1 as

P2 : max
Θt

T∑
t=1

K∑
k=1

Rk,t. (15)

Given the time-varying characteristics of channels, we then
reformulate P2 as a MDP with the following components.
1) Action: The action in the MDP is the configuration of

phases of all IOS elements, defined by

at = Θt,∀θt ∈ Θt, θt ∈ (−π, π). (16)

2) State: The state in the MDP refers to the pair of channel
states and the IOS phase shift matrix/configuration. The
channel state is measured by the equivalent channel be-
tween the BS and users, i.e.,

H = diag(∆)HIUΘHBI +HBU , (17)

where ∆ = [∆1, · · · ,∆K ]. The IOS phase shift config-
uration in each time slot t − 1 is given by Θt−1, with
Θ0 = [0, · · · , 0] being the initial configuration. Then the
state of the MDP can be defined by

st = {Ht,Θt−1}. (18)

3) Reward: The reward of the MDP is consistent with the
objective value of P2, i.e., the sum rate of all users in
time slot t. To avoid the high variation issue brought by
the high value of the reward, we multiply the sum rate by
a coefficient η, so the reward can be expressed by

rt = η

K∑
k=1

γk,t. (19)

Then the accumulated reward at step t is given by rt =∑T
t′=t δ

t′−trt′ , where δ ∈ [0, 1] is the discount factor.
If δ = 1, then maximizing reward is equivalent to the
optimization problem P2.

EnvironmentBase Station

𝑎𝑡 = 𝚯𝑡

IOS

Reflect & Refract

𝚯𝑡−1

𝐇𝑡𝑟𝑡

s𝑡

Sum Rate Feedback

···

𝐇𝑡 = 𝑑𝑖𝑎𝑔 𝚫 𝐇IU,t𝚯t−1𝐇BI,t + 𝐇BU,t

𝐇𝑡+1 = 𝑑𝑖𝑎𝑔 𝚫 𝐇IU,t+1𝚯t𝐇BI,t+1 +𝐇BU,t+1

Fig. 2. MDP Process of IOS configuration

The whole process is shown in Fig. 2. At time slot t,
the BS acquires the equivalent channel information Ht from
the environment and records the IOS configuration Θt−1 at
the previous time slot t − 1.First, the BS uses Zero-Forcing
method [8] to give the digital beamforming vector V t. Then
it determines the action at, i.e., the IOS configuration Θt at
current time slot t, to maximize its own expected reward (19).
The BS then transmits the signals to users and obtains the
reward of the current time slot t, i.e., the sum rate of all users.

IV. MC-DDPG ALGORITHM DESIGN

In this section, we first introduce our proposed MC-DDPG
framework, and then illustrate its detailed design.

A. MC-DDPG Algorithm Framework

A hierarchical design is shown in Fig. 3a and Fig. 3b,
consisting of the meta-learning phase and online learning
phase. Unlike the traditional actor-critic framework [9] where
each actor is paired with a critic, we design a meta-critic
to replace the traditional critics. The experience from all
actors will be sent to one meta-critic for updating the Q-value
evaluation policy.

1) Task: The blue block refers to the task of RL, which
denotes a process of the BS maximizing the sum rates of all
users in a fixed number of time slots. For different tasks, the
parameters of the BS and IOS are set as the same, while the
channel states and locations of users are various.
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𝑇𝑎𝑠𝑘 1
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𝐼
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1 >

< 𝑠𝑡
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Replay

Buffer

Update Actor 𝜃1

Update Actor 𝜃𝐼

< 𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 >

Critic Network

Task Recognition Network

ℋ = {< 𝑠𝑡− ҧ𝑡~𝑡−1
𝑖 , 𝑎𝑡− ҧ𝑡~𝑡−1

𝑖 , 𝑟𝑡− ҧ𝑡~𝑡−1
𝑖 >}

෨𝑄
𝑄i

Update Actor 𝜃𝑖

Meta Critic

𝐴𝑐𝑡𝑜𝑟 𝐼

𝐴𝑐𝑡𝑜𝑟 1

𝑄𝜋(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ,ℋ;𝝎)
Update Meta Critic 𝝎

Meta Training 

Fig. 3a. Framework of MC-DDPG: Meta Learning Phase

𝑁𝑒𝑤 𝑇𝑎𝑠𝑘 𝑠𝑡

Well Trained Meta Critic 𝜔⋆

𝐴𝑐𝑡𝑜𝑟

𝜋(𝑎𝑡|𝑠𝑡 , 𝜃)

𝑎𝑡 < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 >

Replay

Buffer

ℋ = {< 𝑠𝑡− ҧ𝑡~𝑡−1, 𝑎𝑡− ҧ𝑡~𝑡−1, 𝑟𝑡− ҧ𝑡~𝑡−1 >}

Update Actor 𝜃

𝑄𝜋(𝑠𝑡 , 𝑎𝑡 ,ℋ;𝝎⋆)

Online Training 

Fig. 3b. Framework of MC-DDPG: Online Learning Phase

2) Actor: The green block in Fig. 3a and Fig. 3b represents
the actor of the RL method. It receives the information of state
sit from task i in time slot t and outputs correspondent action
ait. To better capture the features of continuous action space,
we adopt a neural network as the policy of the actor, which
will be discussed in detail in Section IV.B.

3) Meta Critic: The meta-critic can be divided into two
parts, a task recognition network, and a critic network. Given
a specific task, the task recognition network extracts the history
information and generates the task-recognition Q-value, which
is sent to the critic network together with the state-action
information of this task. The critic network outputs a task-
specific Q-value to update the actor networks [10].

Meta Learning Process Description: The meta-learning
phase can be described as follows: First, for each task i, its
current state sit is fed to actor i so the actor can generate
an action ait from its learned policy π(a|sit). Task i operates
the action and receives the reward rit from the environ-
ment, then the state-action-reward information < sit, a

i
t, r

i
t >

will be stored in the replay buffer. Meanwhile, the meta
critic collects the history information of task i, i.e., Ht =
{(sk, sk+1, ak, rk)}, k ∈ [t − t, t − 1] from the replay buffer
together with the state-action pair < sit, a

i
t > to give a task-

specific Q-value for updating the actor networks. The meta-
critic is also updated by the trajectories of all tasks in the
replay buffer, which will be detailed in Section IV.B.

In the online learning phase, for a newly-coming real-time
task, the update of the actor network is the same as that of the
meta-learning phase. Differently, the critic is kept static during
online learning. We directly use the well-trained meta-critic to
evaluate the task and then update the actor.

B. Detailed Design of MC-DDPG

In this subsection, we explain the key parts of our proposed
MC-DDPG algorithm, including the tailored design of meta
critic along with actors and the Explore and Reload procedure
we introduced.

1) Tailored Description of Meta Critic and Actors: Our
meta critic is designed based on the TD3 structure which
consists of two Q-networks for more accurate Q-value esti-
mation [11]. We use two neural networks (NN) with weights
ω1,ω2 to parameterize the meta critic, and each actor of task
i is also modeled as an NN policy π(a|sit,θ

i) with weights
θi.

In the dynamic case, the distribution of trajectories of
observed data from different tasks may deviate. We aim to
design a critic that is capable of identifying different tasks by
collecting the history of time-related series of them. For that
purpose, we introduce the Long-Short term Memory (LSTM)
networks as task recognition network which outputs the task
recognition Q-value. Following the interaction process we give
in Fig. 2, we define the task i’s history as a segment of
tuples of state, action, and reward from step u to step v,
i.e., Hi

u∼v = {siu, aiu, riu, . . . , siv, aiv, riv}. For simplicity, we
directly use the most recent t examples as the input of the
task recognition network.

We adopt a four-layer full connected network (FNN) to
learn the features from the current state-action pairs and the
task recognition Q-value from LSTM. Aggregately, the meta-
critic will first recognize the coming task, and then accurately
criticize the actor’s action in a specific state by giving a
task-specific Q-value. We desire to pre-train a meta-critic that
is able to instruct the actor to rapidly adapt to the varying
environment given any new tasks. Such a meta-critic can be
expressed by

Q̃k = fLSTM (Hi
[t−t,t−1];ω

LSTM
k ), k = 1, 2, (20)

Q(sit, a
i
t,Hi

[t−t,t−1];ωk) = fFNN (sit, a
i
t, Q̃k;ω

FNN
k ), k = 1, 2,

(21)
where the Q̃ denotes the task recognition Q-value.

As for the actor, we still use FNN as our policy network. It
takes current state st as input and outputs deterministic action

π(a|sit;θ
i) = fFNN (siT ;θ

i) (22)

2) Loss Function: To train the policy and value networks,
we first define the loss functions of the actor and critic
networks, respectively, then minimize them based on the back
propagation method. For the meta critic, we use temporal
difference (TD) error of all tasks as the loss function

L(ωk) =
1

I

I∑
i=1

Eπ(θi)[Q(sit, a
i
t,Hi

[t−t,t−1];ωk)−

(rt + γminkQ(sit+1, a
i
t+1,Hi

[t−t+1,t];ωk))]
2, k = 1, 2,

(23)

where I refers to the number of tasks. TD error in (23)
represents the similarity between the estimated Q-value of two
critic networks and target Q-value. As for the actor of each
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task, the loss function can be represented by the negative Q-
value

J(θi) = Eπ(θi)[−Q(sit, a
i
t,Hi

[t−t,t−1];ω1)], (24)

which is equivalent to maximizing the expected accumulated
reward (19). The parameters update can be expressed as

ωt+1 = ωt − ρ∇ωL(ω), (25)

θi
t+1 = θi

t − ρ∇θiL(θi), (26)

3) Explore & Reload procedure: Traditional environments
with continuous action space have relatively low dimensions,
however, when it comes to a high dimensional problem as
we proposed in Section III.C, fast convergence may become
a difficult problem. When the dimension of action space is
too high, it is often hard to find a good policy to schedule the
learning rate. Thus, we design a stochastic Explore and Reload
procedure and set two thresholds Threward and Theps. We
introduce noise to enhance the exploration of agent

at = π(a|st) + e, (27)

where e ∼ N (0, ϵ). Before training, we initialize ϵ as ϵ0.
Then in each training episode, we record the maximum reward
rewardmax and the corresponding model of policy πmax.
For the sake of convergence, we set ϵ to be exponentially
decaying as the number of episodes grows until convergence.
If the current reward declines beyond Threward compared to
rewardmax, i.e.,

rewardmax − rewardcurrent > Threward (28)

or rewardmax has not been updated for Theps episodes, the
actor reloads the best recorded model πmax and resets the
exploration noise ϵ = ϵ0 to restart the exploration.

C. Algorithm Description

We summarize the MC-DDPG algorithm in Alg.1. At the
beginning of meta training, we initialize the network parame-
ters of actors and the meta critic with replay buffers allocated
to each actor. For each episode, we select I learning tasks and
initialize them (Line 5). In one task at each step, we select
an action and add exploration noise on it before sending it to
IOS with a reward and the next state fed back (Line 8-9). Then
we sample recent t examples and store them in replay buffer
with state, next state, action, and reward (Line 11). Line 13 is
the process of updating the meta critic, while Lines 15-17 aim
to update the parameters of the actor policy network of task i
and target networks, where d denotes the actor update interval.
Lines 18-22 describe the model reloading process. The output
of the meta training is a well-trained meta critic ω⋆ (Line 23).

In the online learning stage, the agent directly uses well-
trained meta critic ω⋆ to estimate Q-value, and thus only the
actor needs to be trained. In line 27, we initialize the policy
network and replay buffer. The actor determines the agent’s
action and stores the tuple < st, st+1, at, rt > in the buffer as
shown in Lines 31-34. The actor is then updated and reloaded

(Lines 36-40). The output of online learning is the trained
policy of actor θ⋆ (Line 41).

Algorithm 1 MC-DDPG Algorithm
1: Meta Training:
2: input: Multiple task samples.
3: Initialize: (For each task i) Critic Networks Qω1 , Qω2 , and actor-

network πθi with parameters ω1,ω2,θ
i; Target Networks ω′

1 ←
ω1,ω′

2 ← ω2,θ
i′ ← θi;Replay Buffer Ri;

4: for eps in range(MaxEpisode) do
5: Sample I tasks and initialize states s10, · · · , sI0.
6: for t in range(MaxStep) do
7: for each task i do
8: Select action by the actor policy with exploration noise (27).
9: Get reward rit and next state sit+1.

10: Select recent t samples to form history.
11: Store transition tuple (sit, s

i
t+1, a

i
t, r

i
t,Hi

t) into Ri.
12: Sample a batch of N transitions (si, si′, ai, ri,Hi) from Ri.
13: Update Meta Critic by (23) and (25)
14: if t mod d then
15: Update θi by (24) and (26)
16: ω′

k ← τωk + (1− τ)ω′
k .

17: θi′ ← τθi + (1− τ)θi′.
18: for each task i do
19: if current reward > max reward then
20: Store policy model and update the max reward.
21: if conditions defined in IV-B3 are satisfied then
22: Reload policy model and exploration noise.
23: Output: Well-trained meta critic ω⋆.
24: ———————————————————————————–
25: Online Training:
26: input:A new task;Well-trained meta critic ω⋆.
27: Initialize: Policy network θ0; Replay Buffer R;
28: for eps in range(MaxEpisode) do
29: Initialize system state s0.
30: for t in range(MaxStep) do
31: Select action from the policy with exploration noise by (27).
32: Get reward rt and next state st+1.
33: Sample recently t samples to form history.
34: Store transition tuple (st, st+1, at, rt,Ht) into R.
35: Sample a batch of N transitions (s, s′, a, r,H) from R.
36: Update θ by (24) and (26)
37: if current reward > max reward then
38: Store policy model and update the max reward.
39: if conditions defined in IV-B3 are satisfied then
40: Reload policy model and exploration noise.
41: Output: The trained policy of actor θ⋆.

Remark: The MC-DDPG algorithm is guaranteed to con-
verge. This is because we keep decaying exploration noise and
learning rate, with model reloading introduced.

V. SIMULATION RESULTS

In this section, we evaluate the proposed MC-DDPG ap-
proach in dynamic settings. The performance of MC-DDPG
is compared to two benchmark algorithms. [8].

TABLE I
SIMULATION PARAMETERS

Parameter Value
Total number of users K 4
Number of antennas on BS M 8
Number of IOS elements {4,16,64,100}
Time limitation T 20 time slots
Carrier frequency fc 5.9 GHz
Noise power spectral density −93 dBm/Hz
Learning rate ρ 1e− 5
Discount Factor γ 0.99
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A. Simulation Setup

Major parameters of the simulation are summed in Table I.
We assume that the task is updated every 300 episodes, each
episode consists of 20 time slots. We compare our MC-DDPG
with two benchmarks, in each of which for any new task, the
whole algorithm needs to be initialized and performed again.

1) Twin Delayed Deep Deterministic Policy Gradient (TD3),
which is a state-of-the-art RL algorithm [11] without the
meta critic.

2) Zero-Force Exhausting (ZF Exhaust), where the digital
beamforming is based on the ZF method, and the IOS
phase shift optimization is performed based on the Ex-
haustion Attack method with the phase shifts of IOS
elements discretized.

B. Sum Rate Performance in Dynamic Settings

In Fig. 4, we evaluate how the performance of the proposed
algorithm varies with the channel states. Specifically, we up-
date the transition probability matrix in (9) every 300 episodes,
i.e., the task is also updated periodically.

As shown in Fig. 4, the proposed MC-DDPG converges
within 50 episodes to provide a better performance within
50 episodes and achieves a higher sum rate compared to the
two benchmarks. This shows that the proposed scheme can
efficiently adapt to rapid environment changes. Fig. 4 also
reveals that there is a trade-off between the convergence speed
of MC-DDPG and the achievable sum rate.

In Fig. 5, we evaluate the performance of the proposed
scheme when mobile users move rapidly. The proposed MC-
DDPG can rapidly converge to a higher sum rate compared
to the benchmarks. Specifically, since the MC-DDPG can
converge within 100 episodes and we set each user’s position
changes several meters every second, we remark that it can
support the user mobility at a 36 km/h level. The MC-DDPG
also shows a more stable convergence performance compared
to ZF-Exhaust since the ZF-Exhaust is subject to random
initialization of IOS phase shifts.

Fig. 4. Sum rate performance with
respect to the varying channel states

Fig. 5. Sum rate performance with
respect to User’s Loactions

C. Influence of the Number of IOS Elements

Fig. 6 shows the sum rate varying with the number of
IOS elements N . We observe that the proposed MC-DDPG
achieves a higher sum rate as N increases. Besides, the
convergence speed maintains the same when N changes,
implying the effectiveness of the proposed meta-critic method
against the large-scale IOS-assisted communication system.

Fig. 6. Sum rate v.s. the number of IOS elements

VI. CONCLUSION

In this paper, we considered an IOS-assisted communication
system in dynamic environments. We proposed a meta-critic
RL scheme for sum rate maximization given the limited CSI.
By designing and training a meta critic, the proposed scheme
can adapt to the dynamic environment changes such as the
CSI and user positions. Simulation results verify that the
MC-DDPG algorithm achieves a faster convergence speed
and a higher sum rate compared to the benchmarks. Two
conclusions can be drawn below. First, the designed meta-critic
significantly enhances the robustness of the IOS-assisted multi-
user communications against user mobility and the dynamic
CSI. Second, there exists a trade-off between the convergence
speed and the achievable sum rate of MC-DDPG.

REFERENCES

[1] S. Zhang, H. Zhang, B. Di, Y. Tan, M. Di Renzo, Z. Han, H. V. Poor, and
L. Song, “Intelligent omni-surfaces: Ubiquitous wireless transmission
by reflective-refractive metasurfaces,” IEEE Trans. Wireless Commun.,
vol. 21, no. 1, pp. 219–233, Jan. 2021.

[2] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface
assisted multiuser miso systems exploiting deep reinforcement learning,”
IEEE J. Selected Areas Commun., vol. 38, no. 8, pp. 1839–1850, Aug.
2020.

[3] G. Lee, M. Jung, A. T. Z. Kasgari, W. Saad, and M. Bennis, “Deep rein-
forcement learning for energy-efficient networking with reconfigurable
intelligent surfaces,” in IEEE Int. Conf. Commun. (ICC), Jun. 2020.

[4] J. Zhang, J. Li, Y. Zhang, Q. Wu, X. Wu, F. Shu, S. Jin, and
W. Chen, “Collaborative intelligent reflecting surface networks with
multi-agent reinforcement learning,” IEEE J. Selected Topics Signal
Process., vol. 16, no. 3, pp. 532–545, Mar. 2022.

[5] S. Zeng, H. Zhang, B. Di, Y. Tan, Z. Han, H. V. Poor, and L. Song,
“Reconfigurable intelligent surfaces in 6G: Reflective, transmissive, or
both?” IEEE Commun. Lett., vol. 25, no. 6, pp. 2063–2067, Jun. 2021.

[6] H. Zhang and B. Di, “Intelligent omni-surfaces: Simultaneous refraction
and reflection for full-dimensional wireless communications,” IEEE
Commun. Surveys & Tutorials, vol. 24, no. 4, Apr. 2022.

[7] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave mimo systems,” IEEE J. Selected Topics Signal Process., vol. 10,
no. 3, pp. 436–453, 2016.

[8] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid
beamforming for reconfigurable intelligent surface based multi-user
communications: Achievable rates with limited discrete phase shifts,”
IEEE J. Selected Areas Commun., vol. 38, no. 8, pp. 1809–1822, Aug.
2020.

[9] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Sys. Man Cyber., no. 5, pp. 834–846, 1983.

[10] F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang, “Learning to
learn: Meta-critic networks for sample efficient learning,” arXiv preprint
arXiv:1706.09529, 2017.

[11] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in Int. Conf. Machine Learning
(ICML), pp. 1587–1596, Jul. 2018.

Authorized licensed use limited to: Peking University. Downloaded on August 17,2023 at 06:52:05 UTC from IEEE Xplore.  Restrictions apply. 


