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Abstract—Recently reconfigurable intelligent surface (RIS)
has been proposed as a promising technique to enhance the
capacity of wireless networks by reshaping the electromagnetic
characteristics of the environment. However, given numerous RIS
elements, it is non-trivial to design an efficient beamforming
scheme especially for the real-time mobile applications that
require fast response to varying environments. In this paper,
aiming to maximize the sum rate of a multi-user system via
the RIS-enabled beamforming design, a meta-critic network is
proposed to recognize the environment change and automatically
perform the self-updating of the learning model. We also develop
a stochastic Explore and Reload procedure to alleviate the high-
dimensional action space issue. Simulation results demonstrate
that the proposed scheme can converge to a higher sum rate more
rapidly compared to the state-of-the-art methods in dynamic
settings. The robustness of our proposed scheme against different
RIS sizes is also verified.

I. INTRODUCTION

As a novel enabling technology for the next-generation
communications, meta surfaces is able to improve spectrum ef-
ficiency, among which reconfigurable intelligent surface (RIS)
has attracted great attention owing to its ability of desirable
signal reflection. Users can be well-served through program-
ming the phase shifts of the RIS elements. To deal with
the large number of RIS elements, machine learning based
beamforming schemes have been explored, among which
reinforcement learning (RL) has served as a potential tool
to depict the interaction process between the surface and the
environment. However, traditional RL methods may be time-
consuming due to its re-training process, making it not feasible
especially for the real-time dynamic environments.

In this paper, we propose a meta-critic deep deterministic
policy gradient (MC-DDPG) scheme for the RIS-based beam-
forming adapting to dynamic user’s locations. A meta-critic
is designed which serves as an automotive tool for real-time
model parameter generation in new environments by learn-
ing from multiple scenario-specific tasks. Simulation results
show that with only a small amount of cascaded channel
information, MC-DDPG outperforms the traditional RL
method and an iterative algorithm in terms of the sum
rate and the convergence speed in dynamic environments.
The robustness of the MC-DDPG scheme against different
RIS sizes is also verified, which reveals the feasibility of
large-scale MIMO enabled by RIS.

Fig. 1. System model of the RIS-assisted multi-user system

II. SYSTEM MODEL

Fig. 1 shows a downlink multi-user MISO wireless commu-
nication system with a M -antenna base station (BS) serving
K users each equipped with one antenna. The Light-of-
Sight (LoS) channel between the BS and users are often
unstable and suffering from severe fading. An RIS consisting
of N elements is deployed between the users and the BS to
reflect the transmit signals towards the users.

The direct channel between the BS and K users can be
denoted as HBU ∈ CK×M . The BS-RIS link and the RIS-user
link can be denoted by HBI ∈ CN×M and HIU ∈ CK×N ,
respectively. We assume that each channel of HBU ,HBI ,HU

follows the Markov process with the transition of time slots.
The equivalent end-to-end channel from the BS to user k can
be given as

Hk = HIU,kΘHBI +HBU,k, k ∈ Ku, (1)

in which Θ ∈ CN×N = diag([ejθ1 , · · · , ejθN ]),
[ejθ1 , · · · , ejθN ] being the phase shifts configuration of RIS
elements.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Sum Rate Maximization Problem

We consider the sum rate maximization problem in T time
slots, each of which has a duration of ∆T . The signal-to-noise
(SNR) and data rate of user k can be expressed as

γk,t =
|(HIU,kΘHBI +HBU,k)Vk,tmk|2

|(HIU,kΘHBI +HBU,k)
∑K

j=1,̸=k Vj,tmj |2 + σ2
k,t

,

(2)
Rk,t = |∆T log(1 + γk,t)|. (3)



Vj,t refers to the digital beamforming vector from the BS to
the j-th user, mk denotes the symbol BS sends to user j, and
nk,t represents Gaussian noise which follows N(0, σ2

k,t).
For a fixed digital beamforming scheme such as ZF [1] or

MMSE, we can get a sub-optimal solution of Vt directly, the
sum rate maximization problem can be formulated as

max
Θt

T∑
t=1

K∑
k=1

Rk,t, (4)

Given the time-varying characteristics of channels, we then
reformulate it as a MDP consisting of the following com-
ponents: 1)Action:at = Θt,∀θt ∈ Θt, θt ∈ (−π, π).2)
State:st = {Ht,Θt−1},where H = HIUΘHBI + HBU . 3)
Reward:rt = η

∑K
k=1 γk,t, where η is a coefficient.

B. MC-DDPG Algorithm Design

Fig. 2. Framework of MC-DDPG

The design of our proposed MC-DDPG is shown in Fig. 2,
consisting of the meta learning phase and online learning
phase. The experience from all actors will be sent to one meta
critic for updating. The task in it refers to a process of the BS
maximizing the sum rates of all users. For different tasks, the
channel states and locations of users are different.

The meta learning phase can be described as follows: First,
for each task i, its current state sit is fed to actor i so the actor
can generate an action ait from policy π(a|sit). Task i operates
the action and receives the reward rit from the environment,
then the transition tuples < sit, a

i
t, r

i
t > will be stored in the

replay buffer. Meanwhile, the meta critic collects the history
information of task i, i.e., Ht = {(sk, sk+1, ak, rk)}, k ∈
[t − t, t − 1] from the replay buffer together with the state-
action pair < sit, a

i
t > to give a task specific Q-value for

updating the actor networks. The meta critic is also updated
by the trajectories of all tasks in the replay buffer. In the online
learning phase, for a newly-coming real-time task, the update
of the actor network is the same with that of the meta learning
phase while the critic is kept static.

IV. SIMULATION RESULTS

For the simulation, we set the number of antennas of BS
M = 8, number of users K = 4. We compared it to

Algorithm 1 MC-DDPG Algorithm
1: Meta Training:
2: input: Multiple task samples.
3: Initialize: (For each task i) Critic Networks and actor network; Target

Networks;Replay Buffer;
4: for eps in range(MaxEpisode) do
5: Sample I tasks and initialize states.
6: for t in range(MaxStep) do
7: for each task i do
8: Select action and get reward and next state.
9: Store transition tuple into the replay buffer

10: Sample a batch of data and update the Meta Critic.
11: Update the actor networks with delay.
12: Soft-update target networks with delay.
13: Output: Well-trained meta critic.
14: ———————————————————————————–
15: Online Training:
16: input:A new task;Well-trained meta critic.
17: Initialize: Policy network; Replay Buffer.
18: for eps in range(MaxEpisode) do
19: Initialize system state.
20: for t in range(MaxStep) do
21: Select action and get reward and next state.
22: Store transition tuple into the replay buffer.
23: Sample a batch of data and update the actor network.
24: Output: Trained policy of actor.

two benchmark algorithms: 1)Twin delayed deep deterministic
policy gradient (TD3) [2] without the meta critic and 2)
Zero-Force Exhausting (ZF Exhaust) [1], where the digital
beamforming bases on the ZF method, and the RIS phase shift
optimization is performed via the exhaustion attack method.
We assume that the task is updated every 300 episodes, each
of which consists of 20 time slots.

Fig. 3. Sum rate performance with
respect to varying users’ locations

Fig. 4. Achievable sum rate v.s. the
number of RIS elements

Fig. 3 shows the performance of the proposed scheme
when mobile users move rapidly. The proposed MC-DDPG
can rapidly converge to a higher sum rate compared to the
benchmarks. As the MC-DDPG can converge within 100
episodes and we set each user’s position changes 0.01m each
episode, we remark that it can support the user mobility at
a minimum speed of 36 km/h. Fig. 4 shows the sum rate
varying with the number of RIS elements N . We observe that
the proposed MC-DDPG converges to a higher sum rate as
N increases from 64 to 1024 compared to two benchmarks,
which shows its capability of supporting large-scale RIS.
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